Structure and function of melanocytes: microscopic morphology and cell biology of mouse melanocytes in the epidermis and hair follicle. 1995

T Hirobe
Division of Biology, National Institute of Radiological Sciences, Chiba, Japan.

Melanocytes characterized by their tyrosinase activity, melanosomes and dendrites locate in the basal layer of epidermis and hair bulb in the skin of mice. Melanocytes differentiate from undifferentiated melanoblasts derived from embryonic neural crest. Melanocyte-stimulating hormone plays an important role in the regulation of the differentiation of mouse melanocytes in the epidermis and hair bulb by inducing tyrosinase activity, melanosome formation, transfer of melanosomes and increased dendritogenesis. The proliferative activity of differentiating epidermal melanocytes of newborn mice during the healing of skin wounds is regulated by semidominant genes, suggesting that the genes are involved in regulating the proliferative activity of epidermal melanocytes during differentiation. The morphology and differentiated functions of mouse melanocytes are shown to be influenced by environmental factors such as ultraviolet and ionizing radiations. From the results of serum-free culture of mouse epidermal melanoblasts, basic fibroblast growth factor is shown to stimulate the sustained proliferation of melanoblasts in the presence of dibutyryl adenosine 3',5'-cyclic monophosphate and keratinocytes. In contrast, melanocyte differentiation in serum-free culture is induced by melanocyte-stimulating hormone in the presence of keratinocytes. These results suggest that the structure and function of mouse melanocytes in the epidermis and hair bulb are controlled by both genetic factors and local tissue environment, such as hormones and growth factors.

UI MeSH Term Description Entries
D008544 Melanocytes Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES. Melanocyte
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009074 Melanocyte-Stimulating Hormones Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS. MSH,Melanocyte Stimulating Hormone,Melanocyte-Stimulating Hormone,Melanophore Stimulating Hormone,Melanotropin,MSH (Melanocyte-Stimulating Hormones),Melanophore-Stimulating Hormone,Hormone, Melanocyte Stimulating,Hormone, Melanocyte-Stimulating,Hormone, Melanophore Stimulating,Melanocyte Stimulating Hormones,Stimulating Hormone, Melanocyte,Stimulating Hormone, Melanophore
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006197 Hair A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body. Fetal Hair,Hair, Fetal,Lanugo,Fetal Hairs,Hairs,Hairs, Fetal
D000078404 Epidermal Cells Cells from the outermost, non-vascular layer (EPIDERMIS) of the skin. Epidermal Cell,Epidermic Cells,Cell, Epidermal,Cell, Epidermic,Cells, Epidermic,Epidermic Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.

Related Publications

T Hirobe
January 2013, International journal of medical sciences,
T Hirobe
April 2012, Biochemical and biophysical research communications,
T Hirobe
April 2007, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
T Hirobe
January 1972, Journal of electron microscopy,
T Hirobe
January 2020, Methods in molecular biology (Clifton, N.J.),
T Hirobe
February 2011, Pigment cell & melanoma research,
T Hirobe
August 1964, Developmental biology,
Copied contents to your clipboard!