Precocious invasion of the optic stalk by transient retinopetal axons. 1995

B E Reese, and S F Geller
Neuroscience Research Institute, University of California at Santa Barbara 93106-5060, USA.

This study demonstrates that the fetal optic nerve contains a conspicuous population of transient retinopetal axons. Implants of the carbocyanine dye, DiI, were made into the retina or diencephalon of fetal ferrets to label the retinopetal axons retrogradely or anterogradely, respectively, and sections were immunostained for beta-tubulin to label the early differentiating axons in the optic nerve. Dye implants into the optic nerve head, but not the retinal periphery, retrogradely labeled somata in the ventrolateral diencephalon, provided the implants were made before embryonic day (E) 30. When dye implants were made into the ventrolateral diencephalon, these same retinopetal axons were anterogradely labeled, coursing through the optic nerve but never invading the retina. The axons course as 2-5 fascicles from their cells of origin and turn laterally to enter the optic nerve where it joins the future hypothalamus. The retinopetal cells can be retrogradely labeled as early as E20, before optic axons have left the retina. The optic nerve and fiber layer are immunoreactive for beta-tubulin on E24 and thereafter, whereas on E20 and E22, they are immunonegative. Yet at these early embryonic ages, immunopositive fascicles of axons course from the diencephalon into the optic stalk, confirming the precocious nature of the retinopetal projection. Implants of dye made into the future optic nerve head at these very early stages also retrogradely label retinopetal cells in the future chiasmatic region. These cells are distributed primarily on the side ipsilateral to the midline, but a few can be found contralateral to it. Both these, as well as the retinopetal axons arising from the ventrolateral diencephalon, may serve a transient guidance function for later developing optic axons.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

B E Reese, and S F Geller
April 1990, The Journal of comparative neurology,
B E Reese, and S F Geller
December 2005, Current eye research,
B E Reese, and S F Geller
January 1971, Tissue & cell,
B E Reese, and S F Geller
January 2006, Current eye research,
B E Reese, and S F Geller
November 1989, Neuroscience letters,
B E Reese, and S F Geller
November 1948, Archives of ophthalmology (Chicago, Ill. : 1929),
B E Reese, and S F Geller
January 1996, Perspectives on developmental neurobiology,
B E Reese, and S F Geller
January 1969, Experimental cell research,
Copied contents to your clipboard!