The chronotopic reordering of optic axons. 1996

B E Reese
Neuroscience Research Institute, Santa Barbara, California 93106-5060, USA.

Retinal ganglion cell axons become reordered as they pass through the chiasmatic region of the optic pathway. Studies in carnivores and rodents show that the fiber order established in the optic tract is a chronological index of their arrival time during development and that the cause of the reordering may relate to the changing glial environment, as well as to the spatial and temporal distribution of proteoglycans within the developing pathway. Primate optic axons become similarly reordered, allowing one to predict a developmental sequence of ganglion cell genesis from fiber position within the mature optic tract. Fiber position within the tract also anticipates the pattern of geniculate innervation, but a prominent exception to this rule is found in the prosimian Galago. The chronotopic reordering is found in every mammalian species that has been examined, including eutherians and metatherians, suggesting that the mechanism producing it is evolutionarily conserved.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011323 Primates An order of mammals consisting of more than 300 species that include LEMURS; LORISIDAE; TARSIERS; MONKEYS; and HOMINIDS. They are characterized by a relatively large brain when compared with other terrestrial mammals, forward-facing eyes, the presence of a CALCARINE SULCUS, and specialized MECHANORECEPTORS in the hands and feet which allow the perception of light touch. Primate
D002335 Carnivora An order of MAMMALS, usually flesh eaters with appropriate dentition. Suborders include the terrestrial carnivores Fissipedia, and the aquatic carnivores CANIFORMIA.
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

B E Reese
November 1979, The Journal of physiology,
B E Reese
July 2004, The Journal of comparative neurology,
B E Reese
March 1983, Experimental neurology,
B E Reese
December 2009, Investigative ophthalmology & visual science,
B E Reese
June 1977, Journal of the Medical Association of Thailand = Chotmaihet thangphaet,
B E Reese
January 1983, Transactions of the American Ophthalmological Society,
B E Reese
March 1996, The Journal of comparative neurology,
B E Reese
January 2000, Transactions of the American Ophthalmological Society,
Copied contents to your clipboard!