The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H(+)-ATPase. 1995

L Supeková, and F Supek, and N Nelson
Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA.

The vacuolar H(+)-ATPase (V-ATPase) functions as a primary proton pump that generates an electrochemical gradient of protons across the membranes of several internal organelles. It is composed of distinct catalytic and membrane sectors, each containing several subunits. We identified a protein (M16) that copurifies with the V-ATPase complex from Saccharomyces cerevisiae and appears to be present at multiple copies/enzyme. Amino acid sequencing of its proteolytic products yielded three nonoverlapping peptide sequences matching an unidentified reading frame located on chromosome VIII. Sequence analysis of cDNA encoding M16 revealed that the gene encoding this protein (VMA10) is interrupted by a 162-nucleotide intron that begins after the ATG codon of the initiator methionine. The cDNA encodes an hydrophilic protein of 12,713 Da with a basic isoelectric point of pH 9. A delta vma10::URA3 null mutant exhibited growth characteristics typical of other vma disruptant mutants in genes encoding subunits of V-ATPase. The null mutant does not grow on medium buffered at pH 7.5. It fails to accumulate quinacrine into its vacuole, and subunits of the catalytic sector are not assembled onto the vacuolar membrane in the absence of M16. A cold inactivation experiment demonstrated that M16 is a subunit of the membrane sector of V-ATPase. M16 exhibits a significant sequence homology with subunit b of F-ATPase membrane sector.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014617 Vacuoles Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion. Vacuole

Related Publications

L Supeková, and F Supek, and N Nelson
October 1994, The Journal of biological chemistry,
L Supeková, and F Supek, and N Nelson
September 1994, The Journal of biological chemistry,
L Supeková, and F Supek, and N Nelson
June 1993, The Journal of biological chemistry,
L Supeková, and F Supek, and N Nelson
October 1990, The Journal of biological chemistry,
L Supeková, and F Supek, and N Nelson
January 1989, The Journal of biological chemistry,
L Supeková, and F Supek, and N Nelson
May 2007, Biochimica et biophysica acta,
L Supeková, and F Supek, and N Nelson
April 2000, Acta crystallographica. Section D, Biological crystallography,
L Supeková, and F Supek, and N Nelson
October 2004, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!