Synthetic peptides corresponding to the four P regions of Electrophorus electricus Na+ channel: interaction with and organization in model phospholipid membranes. 1995

Y Pouny, and Y Shai
Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.

The hydropathy plot of the alpha subunit of the voltage-gated Na+ channel reveals four homologous repeats, each of which is homologous to Shaker type K+ channel monomer and contains six putative transmembrane segments and a hydrophobic segment within the loop connecting transmembrane segments S5 and S6. Current models predict that the four homologous segments [designated H5 or P regions (PR)] from the S5-S6 loop of each repeat lie in the aqueous pore. Peptides corresponding to the P regions of the four domains of the Electrophorus electricus (eel) Na+ channel (25-36 aa long, designated as PR-I, PR-II, PR-III, and PR-IV) and a 23-mer preceding PR-II (designated pre-PR-II) were synthesized and fluorescently labeled. The segments were then structurally and functionally characterized for their interaction with phospholipid membranes. Although the sequences of the four P regions are significantly different, they all bind to zwitterionic phospholipid membranes with similar partition coefficients (approximately 10(4) M-1). The pre-PR-II does not bind membranes at all. Resonance energy transfer measurements, between donor/acceptor-labeled pairs of peptides, revealed that besides the PR-I/PR-III pair, all other pairs form heteroaggregates but do not coassemble with unrelated membrane-bound peptide. Circular dichroism (CD) spectroscopy revealed that PR-I, PR-II, and PR-III adopt similar partial alpha-helical structures (approximately 30%) in 40% trifluoroethanol and in solutions of 1% sodium dodecylsulfate (SDS). The PR-IV (36 aa) adopts approximately 18% alpha-helical structure, and pre-PR-II gives a low CD signal. These findings are in line with proposed models in which the P regions are packed in close proximity in the lumen of the hydrophobic core of the channel. Furthermore, the finding that the PRs adopt similar partial alpha-helical structures in two different hydrophobic environments might suggest that partial alpha-helical structures also exist in the native channel as proposed by recent models. The results are discussed in terms of proposals that various regions of membrane proteins participate in driving folding or oligomerization of the parent molecules.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D004593 Electrophorus A genus of fish, in the family GYMNOTIFORMES, capable of producing an electric shock that immobilizes fish and other prey. The species Electrophorus electricus is also known as the electric eel, though it is not a true eel. Eel, Electric,Electric Eel,Electrophorus electricus
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel

Related Publications

Y Pouny, and Y Shai
November 1982, Proceedings of the National Academy of Sciences of the United States of America,
Y Pouny, and Y Shai
September 1984, Proceedings of the National Academy of Sciences of the United States of America,
Y Pouny, and Y Shai
July 1995, The Journal of biological chemistry,
Y Pouny, and Y Shai
November 1991, The Journal of biological chemistry,
Y Pouny, and Y Shai
June 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!