Phage T4 DNA [N6-adenine]methyltransferase. Overexpression, purification, and characterization. 1995

V G Kossykh, and S L Schlagman, and S Hattman
Department of Biology, University of Rochester, New York 14627, USA.

The bacteriophage T4 dam gene, encoding the Dam DNA [N6-adenine]methyltransferase (MTase), has been subcloned into the plasmid expression vector, pJW2. In this construct, designated pINT4dam, transcription is from the regulatable phage lambda pR and pL promoters, arranged in tandem. A two-step purification scheme using DEAE-cellulose and phosphocellulose columns in series, followed by hydroxyapatite chromatography, was developed to purify the enzyme to near homogeneity. The yield of purified protein was 2 mg/g of cell paste. The MTase has an s20,w of 3.0 S and a Stokes radius of 23 A and exists in solution as a monomer. The Km for the methyl donor, S-adenosylmethionine, is 0.1 x 10(-6) M, and the Km for substrate nonglucosylated, unmethylated T4 gt- dam DNA is 1.1 x 10(-12) M. The products of DNA methylation, S-adenosyl-L-homocysteine and methylated DNA, are competitive inhibitors of the reaction; Ki values of 2.4 x 10(-6) M and 4.6 x 10(-12) M, respectively, were observed. T4 Dam methylates the palindromic tetranucleotide, GATC, designated the canonical sequence. However, at high MTase:DNA ratios, T4 Dam can methylate some noncanonical sequences belonging to GAY (where Y represents cytosine or thymine).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

V G Kossykh, and S L Schlagman, and S Hattman
January 2001, Molekuliarnaia biologiia,
V G Kossykh, and S L Schlagman, and S Hattman
January 2002, Molekuliarnaia biologiia,
V G Kossykh, and S L Schlagman, and S Hattman
January 1996, Molekuliarnaia biologiia,
V G Kossykh, and S L Schlagman, and S Hattman
December 1988, Gene,
V G Kossykh, and S L Schlagman, and S Hattman
January 1997, Molekuliarnaia biologiia,
V G Kossykh, and S L Schlagman, and S Hattman
March 2003, The Journal of biological chemistry,
V G Kossykh, and S L Schlagman, and S Hattman
November 1989, Nucleic acids research,
Copied contents to your clipboard!