A role for 3AB protein in poliovirus genome replication. 1995

J Lama, and M A Sanz, and P L Rodríguez
Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Spain.

The poliovirus polypeptide 3AB, the precursor of the genome-bound VPg protein, stimulates in vitro the synthesis of poly(U) directed by the viral polymerase 3Dpol (Lama, J., Paul, A., Harris, K., and Wimmer, E. (1994) J. Biol. Chem. 269, 66-70), suggesting that 3AB could be modulating the activity of the viral polymerase in poliovirus-infected cells. To address the exact function of 3AB in the viral replication cycle, a biochemical and molecular genetic analysis of 3AB has been carried out. 3AB protein bound RNA probes in two different assays, and amino acid positions implicated in the RNA binding activity of 3AB were determined. Mutant proteins with reduced RNA binding activity were unable to stimulate 3Dpol polymerase activity. Purified protein 3A showed no RNA binding or 3Dpol stimulatory activity, but 3A and VPg mutations conferred a synergistic effect on the 3AB functions. Polioviruses encoding for these mutant 3ABs were constructed. These mutant viruses translated their RNA genomes in vitro and processed their polyproteins as wild type virus did. Cells infected with 3AB mutant viruses showed over 90% inhibition in the accumulation of plus and minus viral RNA strands and more than 100-fold reduction of virus yield at 4 h postinfection. Our results suggest that 3AB protein functions in vivo as a co-factor of the viral polymerase and that the activity of 3AB may be regulated by proteolytic processing.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012324 RNA-Dependent RNA Polymerase An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293) Nucleoside-Triphosphate:RNA Nucleotidyltransferase (RNA-directed),RNA Replicase,RNA-Dependent RNA Replicase,RNA-Directed RNA Polymerase,RNA Dependent RNA Polymerase,RNA Dependent RNA Replicase,RNA Directed RNA Polymerase,RNA Polymerase, RNA-Dependent,RNA Polymerase, RNA-Directed,RNA Replicase, RNA-Dependent,Replicase, RNA,Replicase, RNA-Dependent RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

J Lama, and M A Sanz, and P L Rodríguez
October 1996, The Journal of biological chemistry,
J Lama, and M A Sanz, and P L Rodríguez
September 2013, The Journal of biological chemistry,
J Lama, and M A Sanz, and P L Rodríguez
September 1996, The Journal of general virology,
J Lama, and M A Sanz, and P L Rodríguez
September 1998, Journal of virology,
J Lama, and M A Sanz, and P L Rodríguez
March 2001, Molecular cell,
J Lama, and M A Sanz, and P L Rodríguez
May 1998, The Journal of biological chemistry,
J Lama, and M A Sanz, and P L Rodríguez
November 1995, RNA (New York, N.Y.),
J Lama, and M A Sanz, and P L Rodríguez
January 1994, Archives of virology. Supplementum,
J Lama, and M A Sanz, and P L Rodríguez
October 1994, The Journal of biological chemistry,
Copied contents to your clipboard!