IRES-controlled protein synthesis and genome replication of poliovirus. 1994

M Schmid, and E Wimmer
Department of Microbiology, School of Medicine, State University of New York at Stony Brook.

Initiation of translation of the single-stranded genomic RNAs of picornaviruses such as poliovirus (PV) and encephalomyocarditis virus (EMCV) is cap-independent and controlled by a long segment within the 5' non-translated region (5'NTR), termed internal ribosomal entry site (IRES). Cellular RNA-binding proteins have been identified that are involved in IRES function in trans. One of these proteins (p57) has been found to be identical to the polypyrimidine tract binding protein (pPTB), a nuclear protein implicated in various processes involving pre-mRNA. Anti-pPTB antibodies inhibit picornavirus mRNA, but not globin mRNA translation, in vitro. Proof for the 5'-independent initiation of translation in vivo was obtained by inserting the EMCV IRES into the ORF of PV thereby constructing a dicistronic, viable poliovirus with the genotype [PV] 5'NTR-P1-[EMCV] IRES-[PV] P2-P3-3'NTR. Dicistronic polioviruses were also constructed that served as novel expression vectors where a foreign gene has been inserted into the PV genome. Incubation of poliovirus RNA in a HeLa cell-free extract leads to the synthesis and processing of viral proteins, viral RNA replication followed by formation of infectious virions. Cell-free synthesis of PV has nullified the dictum that no virus can multiply in a cell-free medium. The genome replication of poliovirus and the mechanism of recombination in poliovirus replication is still not fully understood. Biochemical evidence has been obtained that the conserved NTP-binding motif in PV protein 2C is essential for RNA replication and virus propagation. Finally by using genetic studies we found that during viral RNA synthesis a poliovirus containing two tandemly arranged VPgs (3A-VPg1-VPg2-3Cpro) led to the removal of the 3C-proximal VPg copy.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014758 Viral Core Proteins Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID. Core Proteins, Viral,Major Core Protein,Major Core Proteins, Viral,Adenovirus Core Protein VII,Core Protein V,Core Protein lambda 2,Influenza Virus Core Proteins,Major Core Protein lambda 1,Major Core Protein lambda-1,Major Core Protein sigma 2,Major Core Protein sigma-2,OVP 19,Oncornaviral Protein P19,P30 Core Proteins,Viral Protein P19,Virus Core Proteins,Core Protein, Major,Core Proteins, P30,Core Proteins, Virus,Protein P19, Oncornaviral,Protein P19, Viral,Protein, Major Core,Proteins, P30 Core,Proteins, Viral Core,Proteins, Virus Core
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D017361 Viral Nonstructural Proteins Proteins encoded by a VIRAL GENOME that are not structural components of VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY. Nonstructural Proteins, Viral,NS Proteins, Viral,Viral NS Proteins,Viral Non-Structural Proteins,Viral Nonstructural Protein,Viral Nonstructural Proteins NS1,Viral Nonstructural Proteins NS2,Nonstructural Protein, Viral,Viral Non Structural Proteins

Related Publications

M Schmid, and E Wimmer
October 2017, Scientific reports,
M Schmid, and E Wimmer
June 1995, The Journal of biological chemistry,
M Schmid, and E Wimmer
January 1978, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Schmid, and E Wimmer
January 1987, Cold Spring Harbor symposia on quantitative biology,
M Schmid, and E Wimmer
June 2004, The Journal of clinical investigation,
Copied contents to your clipboard!