Pressure development within a sac-type pneumatically driven ventricular assist device. 1994

W Jin, and C Clark
Department of Manufacturing and Engineering Systems, Brunel University, Uxbridge, Middlesex, U.K.

Intrinsic features of the pumping process of a pneumatically driven ventricular assist device (VAD) and the effects of different types of pneumatic drivers upon its performance were investigated in vitro by analysing the pressure distributions within the device and the motions of the prosthetic valves. It was found that the stretching of the flexible, elastic diaphragm in both late systole and diastole initiates a pressure oscillation which directly affects the timing of the pumping process. The timing was also found to be dependent on the length and stiffness of the cannulae which link the VAD to the model circulation system. During the stretch-induced oscillation in late systole, the VAD housing experiences partial collapse due to fluid momentum effects, which tends to increase the effective stroke volume of the device, and reduce the amplitude of the pressure oscillation. Reducing the rising (falling) rate of driving pressures (dpd/dt) may not necessarily reduce the maximum rate of change of the blood chamber pressure (dpch/dtmax) but may upset the stability of the pumping process. This is because a minimum dpch/dtmax exists, which is determined by the stretch-induced oscillation. In order to minimize dpch/dtmax and to provide the device with a stable working condition, dpd/dt should match the dpch/dtmax.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009038 Motion Physical motion, i.e., a change in position of a body or subject as a result of an external force. It is distinguished from MOVEMENT, a process resulting from biological activity. Motions
D009991 Oscillometry The measurement of frequency or oscillation changes. Oscillometries
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002404 Catheterization Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions. Cannulation,Cannulations,Catheterizations
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D004548 Elasticity Resistance and recovery from distortion of shape.
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006353 Heart-Assist Devices Small pumps, often implantable, designed for temporarily assisting the heart, usually the LEFT VENTRICLE, to pump blood. They consist of a pumping chamber and a power source, which may be partially or totally external to the body and activated by electromagnetic motors. Artificial Ventricle,Heart Assist Device,Heart Ventricle, Artificial,Pumps, Heart-Assist,Vascular-Assist Device,Vascular-Assist Devices,Ventricle-Assist Device,Ventricular Assist Device,Artificial Heart Ventricle,Artificial Heart Ventricles,Artificial Ventricles,Assist Device, Heart,Assist Device, Ventricular,Assist Devices, Heart,Assist Devices, Ventricular,Device, Heart Assist,Device, Heart-Assist,Device, Vascular-Assist,Device, Ventricle-Assist,Device, Ventricular Assist,Devices, Heart Assist,Devices, Heart-Assist,Devices, Vascular-Assist,Devices, Ventricle-Assist,Devices, Ventricular Assist,Heart Assist Devices,Heart Ventricles, Artificial,Heart-Assist Device,Heart-Assist Pump,Heart-Assist Pumps,Pump, Heart-Assist,Pumps, Heart Assist,Vascular Assist Device,Vascular Assist Devices,Ventricle Assist Device,Ventricle, Artificial,Ventricle, Artificial Heart,Ventricle-Assist Devices,Ventricles, Artificial,Ventricles, Artificial Heart,Ventricular Assist Devices

Related Publications

W Jin, and C Clark
July 1991, The science reports of the research institutes, Tohoku University. Ser. C, Medicine. Tohoku Daigaku,
W Jin, and C Clark
February 1977, Journal of biomechanical engineering,
W Jin, and C Clark
July 2006, Artificial organs,
W Jin, and C Clark
August 1982, Journal of biomechanical engineering,
W Jin, and C Clark
January 2007, Bio-medical materials and engineering,
W Jin, and C Clark
November 1997, Artificial organs,
W Jin, and C Clark
January 1992, ASAIO journal (American Society for Artificial Internal Organs : 1992),
W Jin, and C Clark
January 1991, ASAIO transactions,
W Jin, and C Clark
July 2023, The Journal of thoracic and cardiovascular surgery,
Copied contents to your clipboard!