On the mechanisms of 3-tert-butyl-4-hydroxyanisole- and its metabolites-induced cytotoxicities in isolated rat hepatocytes. 1994

Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Japan.

The cytotoxic effects of 3-tert-butyl-4-hydroxyanisole (BHA) and its metabolites, 3-tert-butylhydroquinone (tBHQ) and 3-tert-butyl-4,5-dihydroxyanisole (BHA-OH), were investigated in freshly isolated rat hepatocytes. These compounds caused a time-dependent cell death accompanied by loss of intracellular ATP, glutathione (GSH) and protein thiols at concentration of 0.5 mM. Supplementation of the hepatocyte suspension with 5 mM N-acetylcysteine, a precursor of intracellular GSH, significantly delayed the onset of cytotoxicity induced by BHA-OH and tBHQ; the loss of intracellular ATP, GSH and protein thiols was also prevented. Although N-acetylcysteine did not affect BHA disappearance in the cell suspension, disappearance of tBHQ and formation of tBHQ-GSH conjugate were stimulated by N-acetylcysteine. In addition, N-acetylcysteine prevented BHA-OH disappearance and 3-tert-butyl-5-methoxy-1,2-benzoquinone (BHA-Q) formation. In isolated hepatic mitochondria, BHA, tBHQ and BHA-OH impaired respiration related to oxidative phosphorylation; tert-butylquinone (tBQ) and BHA-Q, quinones derived from tBHQ and BHA-OH, resulted in the significant inhibition of mitochondrial respiration. These results indicate that BHA-OH is the most cytotoxic followed by tBHQ and BHA and that protein thiols and mitochondrial respiratory system are important targets for BHA and its intermediates.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002083 Butylated Hydroxyanisole Mixture of 2- and 3-tert-butyl-4-methoxyphenols that is used as an antioxidant in foods, cosmetics, and pharmaceuticals. Butylhydroxyanisole,(1,1-Dimethylethyl)-4-methoxyphenol,AMIF-72,BHA,Butyl Methoxyphenol,Embanox,Nipantiox 1-F,Tenox BHA,AMIF 72,AMIF72,Hydroxyanisole, Butylated,Methoxyphenol, Butyl,Nipantiox 1 F,Nipantiox 1F
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
November 1985, Cancer research,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
October 1989, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
January 1988, Toxicology in vitro : an international journal published in association with BIBRA,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
April 1985, Cancer research,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
June 1990, Mutation research,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
December 1988, Toxicology,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
July 1982, Chemico-biological interactions,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
November 1984, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
November 1990, Carcinogenesis,
Y Nakagawa, and K Nakajima, and G Moore, and P Moldéus
January 1991, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!