Thermosensitive mutants of Aspergillus awamori glucoamylase by random mutagenesis: inactivation kinetics and structural interpretation. 1994

N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
Department of Chemical Engineering, Iowa State University, Ames 50011.

Seven thermosensitive glucoamylase mutants generated by random mutagenesis and expressed in Saccharomyces cerevisiae were sequenced and their inactivation kinetics were determined. Wild-type glucoamylase expressed in S. cerevisiae was more glycosylated and more stable than the native Aspergillus niger enzyme. All mutants had lower free energies of inactivation than wild-type glucoamylase. In the Ala39-->Val, Ala302-->Val and Leu410-->Phe mutants, small hydrophobic residues were replaced by larger ones, showing that increases in size and hydrophobicity of residues included in hydrophobic clusters were destabilizing. The Gly396-->Ser and Gly407-->Asp mutants had very flexible residues replaced by more rigid ones, and this probably induced changes in the backbone conformation that destabilized the protein. The Pro128-->Ser mutation changed a rigid residue in an alpha-helix to a more flexible one, and destabilized the protein by increasing the entropy of the unfolded state. The Ala residue in the Ala442-->Thr mutation is in the highly O-glycosylated region surrounded by hydrophilic residues, where it may be a hydrophobic anchor linking the O-glycosylated arm to the catalytic core. It was replaced by a residue that potentially is O-glycosylated. In five of the seven mutations, residues that were part of hydrophobic microdomains were changed, confirming the importance of the latter in protein stability and structure.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D005087 Glucan 1,4-alpha-Glucosidase An enzyme that catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues successively from non-reducing ends of polysaccharide chains with the release of beta-glucose. It is also able to hydrolyze 1,6-alpha-glucosidic bonds when the next bond in sequence is 1,4. 1,4-alpha-Glucosidase, Exo,Amyloglucosidase,Exo-1,4-alpha-Glucosidase,Glucoamylase,gamma-Amylase,Glucoamylase G1,Glucoamylase G2,1,4-alpha-Glucosidase, Glucan,Exo 1,4 alpha Glucosidase,Glucan 1,4 alpha Glucosidase,gamma Amylase
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001230 Aspergillus A genus of mitosporic fungi containing about 100 species and eleven different teleomorphs in the family Trichocomaceae.
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
July 1974, Doklady Akademii nauk SSSR,
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
August 1989, Protein engineering,
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
May 1972, Doklady Akademii nauk SSSR,
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
June 1995, Protein engineering,
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
January 2010, Prikladnaia biokhimiia i mikrobiologiia,
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
July 1993, Biotechnology and bioengineering,
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
January 1972, Biokhimiia (Moscow, Russia),
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
January 1993, Protein engineering,
N Flory, and M Gorman, and P M Coutinho, and C Ford, and P J Reilly
January 1970, Biokhimiia (Moscow, Russia),
Copied contents to your clipboard!