Nerve conduction changes and fine structural alterations of extra- and intrafusal muscle and nerve fibers in streptozotocin diabetic rats. 1995

J Weis, and W Dimpfel, and J M Schröder
Institute of Neuropathology, Technical University, Aachen, Germany.

Streptozotocin-induced diabetes mellitus is known to cause a reduction of both conduction velocity and axon caliber in sciatic nerves and also a decrease in muscle fiber size. The present study investigates whether the distal parts of the peripheral nervous system, including extra- and intrafusal muscle fibers, are more severely affected than the proximal segments in the diabetic state. Proximal and distal sensory nerve conduction velocities were monitored during a period of 3 months in rats rendered diabetic by injection of streptozotocin. Segments of the sciatic and ventral coccygeal nerves, and of the biceps femoris and lumbrical muscles, were studied by light and electron microscopy, including morphometric analysis. In contrast to previous studies, daily suboptimal insulin injections were given to prevent acute metabolic complications. Sensory conduction velocity in the ventral coccygeal nerve was significantly (P < 0.05) decreased in the diabetic rats compared to controls. Proximal and distal nerve segments were equally affected. Mean cross-sectional axon area of the sciatic nerve was moderately, but significantly (P < 0.05), smaller in insulin-treated diabetic rats than in controls. In both the sciatic nerve and the terminal, intrafusal nerve segments, occasional axons showed moderate dystrophic changes. Fibers of the intrafusal nerve segments appeared to be equally affected compared to the fibers in the sciatic nerve, although no quantitative comparison was made. The increase of small caliber skeletal muscle fibers in experimental streptozotocin-induced diabetes was confirmed. These findings indicate that proximal and distal segments of peripheral nerves are affected equally in the early stages of experimental diabetic neuropathy.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017933 Peripheral Nervous System The nervous system outside of the brain and spinal cord. The peripheral nervous system has autonomic and somatic divisions. The autonomic nervous system includes the enteric, parasympathetic, and sympathetic subdivisions. The somatic nervous system includes the cranial and spinal nerves and their ganglia and the peripheral sensory receptors. Nervous System, Peripheral,Nervous Systems, Peripheral,Peripheral Nervous Systems,System, Peripheral Nervous,Systems, Peripheral Nervous

Related Publications

J Weis, and W Dimpfel, and J M Schröder
May 1976, Cell and tissue research,
J Weis, and W Dimpfel, and J M Schröder
July 1977, Cell and tissue research,
J Weis, and W Dimpfel, and J M Schröder
October 1975, Cell and tissue research,
J Weis, and W Dimpfel, and J M Schröder
September 2022, Respiratory physiology & neurobiology,
J Weis, and W Dimpfel, and J M Schröder
October 1971, The Journal of cell biology,
J Weis, and W Dimpfel, and J M Schröder
February 1972, The Journal of cell biology,
J Weis, and W Dimpfel, and J M Schröder
January 1999, Journal of the peripheral nervous system : JPNS,
J Weis, and W Dimpfel, and J M Schröder
January 1988, The Journal of diabetic complications,
J Weis, and W Dimpfel, and J M Schröder
August 1982, Archives of biochemistry and biophysics,
Copied contents to your clipboard!