Quantal analysis of hippocampal long-term potentiation. 1994

L L Voronin
Department of Neuronal Mechanisms of Plasticity, Russian Academy of Medical Sciences, Moscow.

Long-term potentiation (LTP) is a lasting (hours, days) increase in electrical responses after brief (seconds) high-frequency activation of monosynaptic pathways. It represents a popular model to study mechanisms of learning and memory. There is a general agreement on mechanisms of LTP induction, at least for LTP in hippocampal area CA1. However, a controversy exists about mechanisms of LTP maintenance: there is evidence for both pre- and postsynaptic locations of LTP mechanisms. Publications on statistical (quantal) analysis of fluctuations of excitatory postsynaptic potentials in hippocampal and some other structures are reviewed. The analysis suggests two independent mechanisms for LTP maintenance during the first hour. They are termed LTPm and LTPv and are expressed as changes in the mean number of transmitter quanta or quantal content (m) and changes in the effect of one quantum or quantal size (v), respectively. The increased number of transmitter quanta per presynaptic impulse (LTPm) can account for the many-fold increase in synaptic efficacy during LTP, especially when initially "silent" connections increase their release probabilities (p). The increase in the number of effective release sites is considered to be secondary to the increase in p. Appearance of new subsynaptic receptors, which can produce an apparent increase in m, is not excluded. The additional mechanism (LTPv) can account for an essential part of potentiation when the LTP magnitude is relatively small (< 60% increase over pretetanic amplitude). Experiments with paired-pulse facilitation support postsynaptic mechanisms for quantization and for LTPv. Intriguing problems for future statistical analysis of quantal synaptic mechanisms for behavioral memory and conditioning are understanding the different mechanisms for induction of LTPm and LTPv, and their contribution to the maintenance of LTP during post-tetanic periods of > 1 hour.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term

Related Publications

L L Voronin
January 1998, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
L L Voronin
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
L L Voronin
January 1987, International journal of neurology,
L L Voronin
May 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L L Voronin
November 2005, The European journal of neuroscience,
L L Voronin
April 1993, Brain research,
Copied contents to your clipboard!