Molecular cloning and sequence analysis of Flavobacterium meningosepticum glycosylasparaginase: a single gene encodes the alpha and beta subunits. 1995

A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
Division of Molecular Medicine, Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509.

A full-length insert for the Flavobacterium meningosepticum N4-(N-acetyl-beta-glucosaminyl)-L-asparagine amidase gene was located on a 2500-bp HindIII fragment and cloned into the plasmid vector pBluescript. DNA sequencing revealed an open reading frame of 1020 nucleotides encoding a putative 45-amino-acid leader sequence and a deduced precursor polypeptide of 295 amino acids. In F. meningosepticum this precursor polypeptide undergoes proteolytic processing by an as yet unknown mechanism to generate an alpha-subunit and a beta-subunit, which constitute the active form of the heterodimeric mature glycosylasparaginase. The Flavobacterium glycosylasparaginase gene was expressed in Escherichia coli and found to be enzymatically active. The recombinant enzyme was purified from crude lysates and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to consist of the typical alpha- and beta-subunits. The recombinant beta-subunit cross-reacted to antibody specific for the rat liver beta-subunit, and Edman analysis demonstrated that its amino-terminus corresponded exactly to that of the mature native glycosylasparagine beta-subunit. A comparison of the Flavobacterium glycosylasparaginase with a mammalian glycosylasparaginase revealed 30% structural identity and 60% overall similarity between the prokaryotic and eukaryotic forms of the enzyme. Even more striking was the conservation of the amino acid sequence in both proteins where the post-translational cleavage to generate the active enzyme occurs. Our data demonstrate that deglycosylation of asparagine-linked glycans via hydrolysis of the AspNHGlcNAc linkage is an important reaction which has been preserved during evolution.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross

Related Publications

A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
September 1990, FEBS letters,
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
December 1990, FEBS letters,
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
March 1998, Protein science : a publication of the Protein Society,
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
November 1994, Structure (London, England : 1993),
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
December 1996, Archives of biochemistry and biophysics,
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
December 1991, Journal of biochemistry,
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
September 1990, The Journal of biological chemistry,
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
December 1998, Bioscience, biotechnology, and biochemistry,
A L Tarentino, and G Quinones, and C R Hauer, and L M Changchien, and T H Plummer
June 1992, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!