Insulin receptor signaling is augmented by antisense inhibition of the protein tyrosine phosphatase LAR. 1995

D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
Department of Pathology, University of Rochester School of Medicine and Dentistry, New York 14642.

Considerable evidence has shown that most physiologic responses to insulin require activation of the intrinsic tyrosine kinase of the insulin receptor. Biochemical studies have also supported the hypothesis that receptor kinase activity can be modulated by cellular protein tyrosine phosphatases (PTPases), which have not yet been identified. To test the hypothesis that the transmembrane PTPase LAR can modulate insulin receptor signaling in vivo, antisense RNA expression was used to specifically suppress LAR protein levels by 63% in the rat hepatoma cell line, McA-RH7777. Hormone-dependent autophosphorylation of the insulin receptor was increased by approximately 150% in the antisense-expressing cells at all insulin concentrations tested. This increase in autophosphorylation was paralleled by a 35% increase in insulin receptor tyrosine kinase activity. Reduced LAR levels did not alter non-hormone-dependent tyrosine phosphorylation nor basal insulin receptor tyrosine phosphorylation and kinase activity. Most significantly, reduced LAR levels resulted in a 350% increase in insulin-dependent phosphatidylinositol 3-kinase activity. These studies provide unique in vivo evidence that LAR is involved in the modulation of insulin receptor signaling in intact cells.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016373 DNA, Antisense DNA that is complementary to the sense strand. (The sense strand has the same sequence as the mRNA transcript. The antisense strand is the template for mRNA synthesis.) Synthetic antisense DNAs are used to hybridize to complementary sequences in target RNAs or DNAs to effect the functioning of specific genes for investigative or therapeutic purposes. Antisense DNA,Anti-Sense DNA,Anti Sense DNA,DNA, Anti-Sense
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
January 1996, The Journal of biological chemistry,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
January 1998, Journal of basic and clinical physiology and pharmacology,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
November 2009, Proceedings of the National Academy of Sciences of the United States of America,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
May 2000, Oncogene,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
June 1997, Biochemical and biophysical research communications,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
March 2003, Molecular and cellular biology,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
November 1996, Cellular signalling,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
May 1996, Molecular endocrinology (Baltimore, Md.),
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
November 2006, Journal of neurobiology,
D T Kulas, and W R Zhang, and B J Goldstein, and R W Furlanetto, and R A Mooney
June 2005, FEBS letters,
Copied contents to your clipboard!