Suppression of insulin receptor activation by overexpression of the protein-tyrosine phosphatase LAR in hepatoma cells. 1996

P M Li, and W R Zhang, and B J Goldstein
Dorrance H. Hamilton Research Laboratories, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.

Protein-tyrosine phosphatases (PTPases) play an essential role in the regulation of reversible tyrosine phosphorylation of cellular proteins that mediate insulin action. In order to explore the potential role of the transmembrane PTPase (LAR) in insulin receptor signal transduction, we overexpressed the full-length LAR protein in McA-RH7777 rat hepatoma cells and found that modest increases in the abundance of LAR protein expression downregulated a number of insulin-stimulated cellular responses closely related to the activation of the receptor kinase. An increase in LAR protein of 2.4-fold over the level in control cells caused a 40% reduction in insulin receptor autophosphorylation in intact cells, without an alteration in insulin receptor mass or a change in the insulin-stimulated receptor kinase activity measured with partially purified receptors in vitro. In addition, insulin-stimulated tyrosine phosphorylation of the endogenous insulin receptor substrates IRS-1 and Shc were decreased to 57% and 73% of control, respectively, and IRS-1 associated phosphatidylinositol 3'-kinase activity was reduced to 47% of control of the cells overexpressing LAR. The present results, taken with our recent data demonstrating that reducing the abundance of LAR by expression of antisense mRNA enhances insulin receptor signal transduction (Kulas D. T., et al. J. Biol. Chem. 270:2435, 1995), supports the hypothesis that LAR acts as a physiological modulator of insulin action in insulin-sensitive hepatoma cells.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D006528 Carcinoma, Hepatocellular A primary malignant neoplasm of epithelial liver cells. It ranges from a well-differentiated tumor with EPITHELIAL CELLS indistinguishable from normal HEPATOCYTES to a poorly differentiated neoplasm. The cells may be uniform or markedly pleomorphic, or form GIANT CELLS. Several classification schemes have been suggested. Hepatocellular Carcinoma,Hepatoma,Liver Cancer, Adult,Liver Cell Carcinoma,Liver Cell Carcinoma, Adult,Adult Liver Cancer,Adult Liver Cancers,Cancer, Adult Liver,Cancers, Adult Liver,Carcinoma, Liver Cell,Carcinomas, Hepatocellular,Carcinomas, Liver Cell,Cell Carcinoma, Liver,Cell Carcinomas, Liver,Hepatocellular Carcinomas,Hepatomas,Liver Cancers, Adult,Liver Cell Carcinomas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

P M Li, and W R Zhang, and B J Goldstein
August 1997, Biochemical and biophysical research communications,
P M Li, and W R Zhang, and B J Goldstein
February 1995, The Journal of biological chemistry,
P M Li, and W R Zhang, and B J Goldstein
April 2001, Proceedings of the National Academy of Sciences of the United States of America,
P M Li, and W R Zhang, and B J Goldstein
January 1997, The Journal of biological chemistry,
P M Li, and W R Zhang, and B J Goldstein
June 1997, Biochemical and biophysical research communications,
P M Li, and W R Zhang, and B J Goldstein
January 1998, Journal of basic and clinical physiology and pharmacology,
P M Li, and W R Zhang, and B J Goldstein
January 1996, The Journal of biological chemistry,
P M Li, and W R Zhang, and B J Goldstein
June 2005, FEBS letters,
P M Li, and W R Zhang, and B J Goldstein
May 2001, Molecular and cellular biochemistry,
Copied contents to your clipboard!