Biochemistry of Parkinson's disease with special reference to the dopaminergic systems. 1994

E C Hirsch
INSERM U 289, Hôpital de la Salpêtrière, Paris, France.

The cardinal neurochemical abnormality in Parkinson's disease is the decreased dopamine content in the striatum, resulting from the loss of dopaminergic neurons in the mesencephalon. Precise analysis of the dopaminergic neurons in the midbrain demonstrates, however, that this cell loss is not uniform. Some dopaminergic cell groups are more vulnerable than others. The degree of cell loss is severe in the substantia nigra pars compacta, intermediate in the ventral tegmental area and cell group A8, but nonexistent in the central gray substance. This heterogeneity provides a good paradigm for analyzing the factors implicated in this differential vulnerability. So far, the neurons that degenerate have been shown to contain neuromelanin, high amounts of iron, and no calbindin28K, and to be poorly protected against oxidative stress. By contrast, the neurons that survive in Parkinson's disease are free of neuromelanin, calbindinD28-positive, contain low amounts of iron, and are better protected against oxidative stress. The analysis of the pattern of cell loss in Parkinson's disease may thus bring new clues as to the mechanism of nerve cell death in Parkinson's disease.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell

Related Publications

E C Hirsch
October 1955, Acta histochemica,
E C Hirsch
July 2023, Parkinsonism & related disorders,
E C Hirsch
September 1967, Arerugi = [Allergy],
E C Hirsch
January 1974, Psychotherapy and psychosomatics,
E C Hirsch
September 1969, Rinsho byori. The Japanese journal of clinical pathology,
E C Hirsch
January 2020, Frontiers in pharmacology,
E C Hirsch
September 2023, Parkinsonism & related disorders,
Copied contents to your clipboard!