Hypothalamic neuropeptide Y, its gene expression and receptor activity: relation to circulating corticosterone in adrenalectomized rats. 1994

A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
Rockefeller University, New York, NY 10021.

Previous evidence has suggested a possible relationship between the adrenal steroid, corticosterone (CORT) and neuropeptide Y (NPY) in the brain. To provide a more systematic analysis of this interaction, the present study employed a variety of techniques, including in situ hybridization to measure NPY gene expression, radioimmunoassay to examine peptide levels and radioligand [125I]peptide YY (PYY) binding for analysis of peptide receptors. The results show that adrenalectomy (ADX), which caused a decline in CORT to levels < 0.3 micrograms %, has generally little impact on the hypothalamic NPY projection system under normal, basal conditions. This includes peptide gene expression or content in the area of its cell bodies (arcuate nucleus, ARC), in addition to peptide binding at its receptor sites. While it also includes peptide content at most hypothalamic terminal sites, there are three notable exceptions, namely, the medial paraventricular (PVN) and dorsomedial nuclei and medial preoptic area, where NPY nerve terminals and glucocorticoid receptors are particularly dense and the decline in CORT through ADX markedly reduces NPY content. In contrast, evidence obtained from CORT replacement in ADX rats shows that this steroid has profound impact on all components of the hypothalamic NPY system. This peptide-steroid interaction is apparent at the level of the cell body (ARC), as well as at the nerve terminal or receptor site (PVN and ARC), where CORT levels > 10 micrograms % strongly potentiate NPY gene expression, peptide content and radioligand binding. These and other findings suggest that this CORT-NPY interaction in the hypothalamus occurs physiologically under conditions, e.g., at the onset of the active feeding cycle, when circulating CORT normally rises.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D011964 Receptors, Gastrointestinal Hormone Cell surface proteins that bind gastrointestinal hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Most gastrointestinal hormones also act as neurotransmitters so these receptors are also present in the central and peripheral nervous systems. Gastrointestinal Hormone Receptors,Intestinal Hormone Receptors,Receptors, Gastrointestinal Peptides,Gastrointestinal Hormone Receptor,Intestinal Hormone Receptor,Receptors, Gastrointestinal Hormones,Receptors, Intestinal Hormone,Gastrointestinal Hormones Receptors,Gastrointestinal Peptides Receptors,Hormone Receptor, Gastrointestinal,Hormone Receptor, Intestinal,Hormone Receptors, Gastrointestinal,Hormone Receptors, Intestinal,Hormones Receptors, Gastrointestinal,Peptides Receptors, Gastrointestinal,Receptor, Gastrointestinal Hormone,Receptor, Intestinal Hormone
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D000315 Adrenalectomy Excision of one or both adrenal glands. (From Dorland, 28th ed) Adrenalectomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
June 1994, Molecular and cellular neurosciences,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
September 1992, Brain research. Molecular brain research,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
January 1990, Annals of the New York Academy of Sciences,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
January 1996, European journal of pharmacology,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
December 1992, Brain research. Molecular brain research,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
August 1998, Brain research,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
June 1992, Endocrinology,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
June 1992, Endocrinology,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
November 1997, Brain research,
A Akabayashi, and Y Watanabe, and C Wahlestedt, and B S McEwen, and X Paez, and S F Leibowitz
July 2016, Andrology,
Copied contents to your clipboard!