Mechanisms of intracellular calcium release during hormone and neurotransmitter action investigated with flash photolysis. 1993

D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
National Institute for Medical Research, London, UK.

To understand the complex time course of cytosolic Ca2+ signalling evoked by hormones and neurotransmitters, it is necessary to know the kinetics of steps in the second-messenger cascade, particularly cooperative and inhibitory interactions between components that might give rise to periodic fluctuations. In the case of inositol trisphosphate (InsP3)-evoked Ca2+ release, fast perfusion studies with subcellular fractions or permeabilised cells can be made if sufficient homogeneous tissue is available. Single-cell studies can be made by combining whole-cell patch-clamp techniques and microspectrofluorimetry with flash photolytic release of InsP3 to give quantitative, time-resolved data of Ca2+ release from stores. A technical description is given here of flash photolysis of caged InsP3, and the results of fast perfusion and flash photolytic experiments are reviewed. Studies of kinetics of Ca2+ release have shown that the InsP3 receptor/channel is regulated first by positive and then by negative feedback by free cytosolic Ca2+ concentration, producing a pulse of Ca2+ release having properties that may be important in the spatial propagation of Ca2+ signals within and between cells. The properties of InsP3-evoked Ca2+ release in single cells differ between peripheral tissues, such as the liver, and Purkinje neurones of the cerebellum. Purkinje neurones need 20-50 times higher InsP3 concentrations and release Ca2+ to change the free cytosolic concentration 30 times faster and to higher peak concentrations than in liver. The InsP3 receptors in the two cell types appear to differ in apparent affinity, and the greater Ca2+ efflux from stores in Purkinje cells is probably due to a high receptor density.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
January 1990, Annual review of gerontology & geriatrics,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
October 1998, Journal of biomechanical engineering,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
January 1988, Annals of the New York Academy of Sciences,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
September 1989, Nature,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
September 1992, Bulletin of mathematical biology,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
January 1998, Acta biochimica Polonica,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
May 1994, Pflugers Archiv : European journal of physiology,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
December 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
August 2012, Biochimica et biophysica acta,
D C Ogden, and K Khodakhah, and T D Carter, and P T Gray, and T Capiod
January 1982, Advances in experimental medicine and biology,
Copied contents to your clipboard!