Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. 1994

K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
Department of Plant Breeding, Cornell University, Ithaca, NY 14853-1902.

We obtained DNA clones specific to tomato chromosome 2 from a small number of chromosomes collected by flow sorting. Suspensions of metaphase chromosomes were prepared from 3-month-old tomato cell cultures of Lycopersicon pennellii. Isolated chromosomes stained with chromomycin A3 and Hoechst 33258 were analyzed on an EPICS 753 flow cytometer using a UV laser to excite Hoechst fluorescence and a 458 nm laser to excite chromomycin A3 fluorescence. Chromosomes from well-resolved peaks on a bivariate flow karyotype were sorted directly onto membrane filters for spot-blot analysis. The filters were processed and hybridized with chromosome-specific repetitive DNA probes. In this way tomato chromosome 1 and chromosome 2 were assigned to peaks in the bivariate flow karyotypes. One thousand copies of the putative chromosome 2 were flow-sorted directly into microfuge tubes. DNA specific to chromosome 2 was amplified by a polymerase chain reaction (PCR) technique using universal 22mer degenerate oligonucleotide primers (DOP) sequences. DOP-PCR yields a smear of fragments of various sizes from 250 to 1600 bp. Amplified products were cloned into the Bluescript plasmid vector. Approximately 11% of the clones contained sequences with highly repetitive elements, and 85% contained only low-copy-number sequences. Eleven clones containing low-copy-number sequences that detect restriction fragment length polymorphisms were placed on the molecular linkage map of tomato. All showed linkage to chromosome 2.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014675 Vegetables A food group comprised of EDIBLE PLANTS or their parts. Vegetable
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal

Related Publications

K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
January 1986, Cold Spring Harbor symposia on quantitative biology,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
February 1992, Genomics,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
January 1992, Cytogenetics and cell genetics,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
February 1989, Nucleic acids research,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
March 1982, Cytometry,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
June 1994, Proceedings of the National Academy of Sciences of the United States of America,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
September 1993, Nucleic acids research,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
January 1990, Cytometry,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
December 1984, Cancer genetics and cytogenetics,
K Arumuganathan, and G B Martin, and H Telenius, and S D Tanksley, and E D Earle
April 1992, Nucleic acids research,
Copied contents to your clipboard!