A polyprotein precursor of two mitochondrial enzymes in Neurospora crassa. Gene structure and precursor processing. 1994

S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569.

N-Acetylglutamate kinase (AGK) and N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) function as two separate mitochondrial enzymes, but are encoded by a single nuclear gene in several fungi. The Neurospora crassa arg-6 gene encoding these enzymes has been cloned and sequenced, and the enzymes responsible for processing the polyprotein precursor have been identified. The 871-amino acid precursor contains a normal N-terminal mitochondrial targeting sequence, an internal connecting region (approximately 200 amino acids) upstream of the distal reductase domain, and coding regions with N-terminal amino acid sequences identical with those of purified N-acetylglutamate kinase and N-acetyl-gamma-glutamyl-phosphate reductase. Sequence comparisons of the coding regions indicate high levels of conservation between prokaryotic and fungal proteins. Regions suggesting ancestral relationships to N-acetylglutamate synthase and aspartate beta-semialdehyde dehydrogenase have been identified. Both the N-terminal targeting sequence and the connecting region contain consensus sites for cleavage by the mitochondrial processing peptidase and processing enhancing protein. In vitro processing assays with intact mitochondria, solubilized mitochondria, and purified enzymes have shown that the mitochondrial processing peptidase and processing enhancing protein cleave not only the N-terminal mitochondrial targeting sequence but also process the polyprotein precursor into the two mature enzymes.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme

Related Publications

S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
April 1998, The Journal of biological chemistry,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
April 1987, The Journal of biological chemistry,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
September 1987, Nucleic acids research,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
July 1975, Canadian journal of biochemistry,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
February 2005, The Biochemical journal,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
February 1994, The Journal of biological chemistry,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
January 1995, Methods in enzymology,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
January 1988, The Journal of biological chemistry,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
May 1972, Canadian journal of microbiology,
S F Gessert, and J H Kim, and F E Nargang, and R L Weiss
November 1979, Genetics,
Copied contents to your clipboard!