Interaction of bacterial RNA-polymerase with two different promoters of phage T7 DNA. Conformational analysis. 1993

O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region.

Using a rifampicin-resistant RNA polymerase with altered specificity to different promoters, the D promoter of T7 phage DNA with increased affinity to the mutant enzyme was chosen. This promoter and the T7 A1 promoter with unchanged affinity as well as some nonpromoter DNA fragments were used to compare temperature-induced conformational transitions of RNA polymerase in the course of complex formation. Conformational alterations of RNA polymerase were monitored by the fluorescent label method. It was shown that RNA polymerase undergoes a set of conformational transitions during complex formation with each promoter, some of which were similar by the character of change to spectral parameters of the label (reflecting RPi and, probably, RPo formation). The local structure of complexes formed above 33 degrees C differs for A1 and D. The conformational analysis reveals at least one temperature-dependent stage upon nonspecific interaction of the enzyme with nonpromoter DNA at 13-16 degrees C. Models of functional organization of the enzyme recognizing center and some features of the structure of the promoters which may be essential for their recognition are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
January 2001, Biofizika,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
January 1998, Acta biochimica Polonica,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
January 2007, Molekuliarnaia biologiia,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
May 1989, Cell,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
January 1971, Molecular & general genetics : MGG,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
January 2014, Journal of biomolecular structure & dynamics,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
May 1987, Biochemistry,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
November 1979, The Journal of biological chemistry,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
September 1975, European journal of biochemistry,
O N Ozoline, and T A Uteshev, and I S Masulis, and S G Kamzolova
January 1988, Molekuliarnaia biologiia,
Copied contents to your clipboard!