Muscarinic cholinergic receptor binding in rat brain at 15 days following traumatic brain injury. 1994

J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
Department of Surgery, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298-0693.

Laboratory studies indicate that activation of muscarinic cholinergic receptors (mAChRs) at or soon after traumatic brain injury (TBI) significantly contributes to behavioral morbidity. Recent research has demonstrated that pre-injury treatment with the muscarinic antagonist scopolamine significantly reduces spatial memory deficits at 11-15 days post-TBI. In the present study, we examined mAChR binding kinetics in brain regions at 15 days after moderate (1.95 atm) fluid percussion TBI in untreated and scopolamine-treated rats. Three groups were examined: untreated TBI (n = 8), TBI with pre-injury scopolamine treatment (1.0 mg/kg, i.p., 15 min prior to injury) (n = 11), and sham-injury (n = 7). The affinity (Kd) and maximum number of binding sites (Bmax) of mAChRs in hippocampus, neocortex, and brainstem were determined by [3H]QNB binding. Bmax values in TBI animals were significantly higher in hippocampus (4061 +/- 494 fmol/mg protein) and neocortex (4272 +/- 640 fmol/mg protein), but not in brainstem (833 +/- 39 fmol/mg protein) compared to sham-injured controls (hipp. 2812 +/- 218 fmol/mg/protein; neoctx. 2850 +/- 129 fmol/mg protein; brainstem 794 +/- 26 fmol/mg protein) (P < 0.05). At 15 days after injury, Bmax values of mAChRs in TBI animals with pre-injury scopolamine treatment (hipp. 2850 +/- 129 fmol/mg protein; neoctx. 2948 +/- 123 fmol/mg protein) did not differ from control. In all brain regions, Kd values did not differ between groups. These results demonstrate that TBI significantly alters the binding sites of mAChRs in hippocampus and neocortex for as long as 15 days after TBI. Furthermore, these results indicate that a pharmacological treatment that improves motor and memory function outcome also normalizes aspects of mAChRs physiology. These data suggest that excessive activation of mAChRs at or soon after TBI impact contributes to long-term pathophysiological processes in TBI.

UI MeSH Term Description Entries
D008297 Male Males
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
August 1994, Brain research,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
May 1974, Proceedings of the National Academy of Sciences of the United States of America,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
January 1987, Radiation research,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
November 1974, Brain research,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
June 1983, Agents and actions,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
August 1987, Research communications in chemical pathology and pharmacology,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
November 2000, Journal of neurotrauma,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
January 1991, Journal of medicine,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
September 1974, Brain research,
J Y Jiang, and B G Lyeth, and T M Delahunty, and L L Phillips, and R J Hamm
January 1986, Neurochemistry international,
Copied contents to your clipboard!