The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. 1994

C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
Johns Hopkins Oncology Center, Baltimore, Maryland 21287.

The p53 protein is a critical participant in a signal transduction pathway which mediates a G1 cell cycle arrest and apoptotic cell death in mammalian cells after ionizing irradiation. Cells from patients with the cancer-prone, radiation-sensitive disorder, ataxia-telangiectasia (AT), exhibit suboptimal (delayed and/or defective) induction of p53 protein after ionizing radiation with some dependence on dose. Other protein products which participate in this signal transduction pathway, including p21WAF1/CIP1, Gadd45, and Mdm2, are also suboptimally induced in AT cells after ionizing radiation. Induction of p53 is also abnormal in AT cells following treatment with methylmethanesulfonate and bleomycin but appears relatively normal following treatment with UV-C irradiation or the topoisomerase inhibitors, etoposide and camptothecin. These results demonstrate a specific defect in this p53-dependent signal transduction pathway in AT cells. Potential models for this observed specificity of the AT defect as measured by p53 induction include problems with responses to: (a) single-strand, but not double-strand, DNA breaks; or (b) chemically, but not enzymatically, generated DNA ends.

UI MeSH Term Description Entries
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001260 Ataxia Telangiectasia An autosomal recessive inherited disorder characterized by choreoathetosis beginning in childhood, progressive CEREBELLAR ATAXIA; TELANGIECTASIS of CONJUNCTIVA and SKIN; DYSARTHRIA; B- and T-cell immunodeficiency, and RADIOSENSITIVITY to IONIZING RADIATION. Affected individuals are prone to recurrent sinobronchopulmonary infections, lymphoreticular neoplasms, and other malignancies. Serum ALPHA-FETOPROTEINS are usually elevated. (Menkes, Textbook of Child Neurology, 5th ed, p688) The gene for this disorder (ATM) encodes a cell cycle checkpoint protein kinase and has been mapped to chromosome 11 (11q22-q23). Louis-Bar Syndrome,Ataxia Telangiectasia Syndrome,Ataxia-Telangiectasia,Telangiectasia, Cerebello-Oculocutaneous,Louis Bar Syndrome,Syndrome, Ataxia Telangiectasia,Syndrome, Louis-Bar
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b

Related Publications

C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
August 1995, Oncogene,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
November 1992, Cell,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
December 1995, Biochemical and biophysical research communications,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
November 2001, Cancer research,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
April 1996, Current opinion in neurology,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
July 2018, Virus research,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
January 2023, BMC cancer,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
October 2001, Molecular pathology : MP,
C E Canman, and A C Wolff, and C Y Chen, and A J Fornace, and M B Kastan
March 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!