Structure of the human CALM1 calmodulin gene and identification of two CALM1-related pseudogenes CALM1P1 and CALM1P2. 1994

J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
Laboratory for Biochemistry, Swiss Federal Institute of Technology, ETH Zentrum, Zurich.

The human CALM1 calmodulin gene has been isolated and characterized. The gene contains six exons spread over about 10 kb of genomic DNA. The exon-intron structure is identical to that of the human CALM3 and of the rat CALM1 and CALM3 genes. A cluster of transcription-start sites was identified 200 bp upstream of the ATG translation-start codon, and several putative regulatory elements were found in the 5' flanking region as well as in intron 1. Sequence comparison with the rat CALM1 gene revealed significant similarities in the promoter regions of the two genes and an even more striking degree of identity (70%) in the available intron 1 sequences. A short CAG trinucleotide repeat region was identified in the 5' untranslated region of the human CALM1 gene; this sequence is not conserved in the rat counterpart. Expression of the CALM1 gene was detected in all human tissues tested, although at varying levels. A 1.7-kb mRNA was uniformly present at comparable levels, whereas a 4.2-kb mRNA species was particularly abundant in brain and skeletal muscle. Clones for two different CALM1-related pseudogenes CALM1P1 and CALM1P2 were also isolated and characterized. Both pseudogenes are intronless and non-functional as judged from the presence of mutations abolishing the open reading frame. Genomic Southern analysis indicates that the human CALM1 gene/pseudogene subfamily comprises at least three but probably no more than four members. The entire family consists of three bona fide CALM genes, at least one expressed calmodulin-like CALML gene as well as at least five pseudogenes.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011544 Pseudogenes Genes bearing close resemblance to known genes at different loci, but rendered non-functional by additions or deletions in structure that prevent normal transcription or translation. When lacking introns and containing a poly-A segment near the downstream end (as a result of reverse copying from processed nuclear RNA into double-stranded DNA), they are called processed genes. Genes, Processed,beta-Tubulin Pseudogene,Gene, Processed,Processed Gene,Processed Genes,Pseudogene,Pseudogene, beta-Tubulin,Pseudogenes, beta-Tubulin,beta Tubulin Pseudogene,beta-Tubulin Pseudogenes
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes

Related Publications

J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
May 2002, Gene,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
July 1996, Genomics,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
May 1998, Cell calcium,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
January 1986, Nucleic acids research,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
December 1991, Transplantation proceedings,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
July 1990, European journal of biochemistry,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
March 1987, The Journal of biological chemistry,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
September 1995, Genomics,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
January 1991, Gene,
J A Rhyner, and M Ottiger, and R Wicki, and T M Greenwood, and E E Strehler
April 2006, Environmental and molecular mutagenesis,
Copied contents to your clipboard!