Involvement of dileucine motifs in the internalization and degradation of the insulin receptor. 1994

C R Haft, and R D Klausner, and S I Taylor
Diabetes Branch, NIDDKD, National Institutes of Health, Bethesda, Maryland 20892-1770.

Dileucine motifs have been shown to be involved in trans Golgi sorting, lysosomal targeting, and internalization of a number of proteins. The insulin receptor contains four dileucine pairs in its cytoplasmic domain. To determine if these insulin receptor sequences can serve as lysosomal sorting sequences, chimeric molecules expressing the Tac antigen fused to each isolated insulin receptor motif were constructed. A chimera containing the juxtamembrane dileucine motif (EKITLL), which closely resembles the sequences originally identified in the gamma- and delta-chains of the T cell receptor (DKQTLL and EVQALL), was shown to sort to lysosomes by immunofluorescence microscopy, as did a chimera expressing the dileucine motif (GGKGLL) found in the tyrosine kinase domain. Chimeras expressing either a second tyrosine kinase domain sequence (HVVRLL) or the carboxyl-terminal sequence (EIVNLL) localized to both lysosomes and the plasma membrane. In contrast, chimeras expressing two other potential sorting signals found in the cytoplasmic tail of the insulin receptor (NARDII and KNGRIL) localized predominantly to the plasma membrane. Exclusively cell surface staining was also seen for a chimera expressing a mutant motif (EKITAA), where the leucine residues were mutated to alanines. When the alanine pair was introduced into the juxtamembrane domain of the intact insulin receptor and the mutant receptor expressed in NIH-3T3 cells, we found that the mutation did not impair insulin binding or receptor tyrosine kinase activity. However, the Ala-Ala mutant internalized insulin 5-fold slower than the wild-type receptor. Taken together, these findings suggest that the dileucine motif found in the juxtamembrane domain of the insulin receptor is involved in receptor internalization and that other insulin receptor sequences may mask the potential lysosomal targeting signals in the intact molecule.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors

Related Publications

C R Haft, and R D Klausner, and S I Taylor
November 2002, The Journal of biological chemistry,
C R Haft, and R D Klausner, and S I Taylor
July 2008, Biochemical and biophysical research communications,
C R Haft, and R D Klausner, and S I Taylor
April 1998, Endocrinology,
C R Haft, and R D Klausner, and S I Taylor
January 1988, Clinical physiology and biochemistry,
C R Haft, and R D Klausner, and S I Taylor
November 1997, Proceedings of the National Academy of Sciences of the United States of America,
C R Haft, and R D Klausner, and S I Taylor
October 2011, Traffic (Copenhagen, Denmark),
C R Haft, and R D Klausner, and S I Taylor
August 1997, The Journal of biological chemistry,
C R Haft, and R D Klausner, and S I Taylor
May 1998, Molecular and cellular biochemistry,
Copied contents to your clipboard!