Regulation of the very low density lipoprotein receptor by thyroid hormone in rat skeletal muscle. 1994

E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235.

A new member of the low density lipoprotein receptor gene family that binds and internalizes very low density lipoprotein (VLDL) particles was previously cloned and characterized from the rabbit and human. The physiological role of this putative VLDL receptor is not known, but its tissue distribution and ligand specificity suggest a possible role in the delivery of triglycerides to peripheral tissue. To learn more about the potential function of this receptor, we measured the changes in VLDL receptor mRNA and protein in various tissues following dietary or hormonal manipulation of rats. No significant changes in the VLDL receptor mRNA or protein were seen after a 48-h fast and subsequent to refeeding. A striking change in receptor mRNA and protein was observed in skeletal muscle of hypothyroid and hyperthyroid rats. In hypothyroid rats, the amount of immunodetectable VLDL receptor was reduced by 80%, while in the hyperthyroid animals it was increased by 300%. These maneuvers did not affect VLDL receptor mRNA or protein levels in adipose tissue or heart. The changes in VLDL receptor mRNA in muscle were opposite to those observed with lipoprotein lipase. These studies suggest that the VLDL receptor plays a role in a metabolic process in muscle that is regulated by thyroid hormone.

UI MeSH Term Description Entries
D006980 Hyperthyroidism Hypersecretion of THYROID HORMONES from the THYROID GLAND. Elevated levels of thyroid hormones increase BASAL METABOLIC RATE. Hyperthyroid,Primary Hyperthyroidism,Hyperthyroidism, Primary,Hyperthyroids
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
January 1996, Circulation research,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
November 1995, Archives of biochemistry and biophysics,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
July 2013, Biochemical and biophysical research communications,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
August 1991, FEBS letters,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
December 2002, Biochimica et biophysica acta,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
July 1993, Seikagaku. The Journal of Japanese Biochemical Society,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
August 2000, Microscopy research and technique,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
October 1997, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
February 1979, The Biochemical journal,
E V Jokinen, and K T Landschulz, and K L Wyne, and Y K Ho, and P K Frykman, and H H Hobbs
March 1996, The Journal of biological chemistry,
Copied contents to your clipboard!