Ventilatory acclimatization to chronic hypoxia: relationship to noradrenaline metabolism in the rat solitary complex. 1994

P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
Laboratoire de Neuropharmacologie Moléculaire, UMR 105-CNRS, Faculté de Médecine, Lyon, France.

1. The relationship between ventilatory acclimatization to chronic hypoxia (10% O2-90% N2) and noradrenaline metabolism was examined in two regions located immediately caudal and rostral to the obex within the rat solitary complex. 2. Three experimental protocols were established. In protocol 1, the percentage changes in respiratory tidal volume, frequency and minute ventilation elicited by 4, 7, 10 and 14 days of hypoxia were assessed by flow plethysmography in awake rats, and then the content of tyrosine hydroxylase was measured in the solitary complex. In protocol 2, the time course response of tyrosine hydroxylase protein level was determined after 3, 7, 14 and 22 days of hypoxia by using a quantitative immunoblotting method for the protein assay. In protocol 3, the turnover of noradrenaline was estimated in the solitary complex after 14 days of hypoxia. 3. A progressive increase in ventilation was observed to reach a maximum (+105 +/- 15%, mean +/- S.E.M.) above normoxic control after 10 days of hypoxia, at which time it stabilized. Furthermore, tyrosine hydroxylase protein increased progressively and reached a maximal level at 14 days of hypoxia (+36 +/- 4%, mean +/- S.E.M.). Return to the basal level of tyrosine hydroxylase was observed after 22 days of hypoxia. 4. Tyrosine hydroxylase content (+36 +/- 4%) and noradrenaline turnover (+394 +/- 3%) increased exclusively in the caudal part of the solitary complex. 5. The ventilatory acclimatization to chronic hypoxia preceded the increase in tyrosine hydroxylase and these two parameters were significantly correlated. 6. These data suggest that ventilatory acclimatization to chronic hypoxia is associated with topical modifications of the brainstem catecholamine metabolism.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D000064 Acclimatization Adaptation to a new environment or to a change in the old. Acclimation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017552 Solitary Nucleus GRAY MATTER located in the dorsomedial part of the MEDULLA OBLONGATA associated with the solitary tract. The solitary nucleus receives inputs from most organ systems including the terminations of the facial, glossopharyngeal, and vagus nerves. It is a major coordinator of AUTONOMIC NERVOUS SYSTEM regulation of cardiovascular, respiratory, gustatory, gastrointestinal, and chemoreceptive aspects of HOMEOSTASIS. The solitary nucleus is also notable for the large number of NEUROTRANSMITTERS which are found therein. Nucleus Solitarius,Nuclei Tractus Solitarii,Nucleus Tractus Solitarii,Nucleus of Solitary Tract,Nucleus of Tractus Solitarius,Nucleus of the Solitary Tract,Solitary Nuclear Complex,Solitary Tract Nucleus,Complex, Solitary Nuclear,Complices, Solitary Nuclear,Nuclear Complex, Solitary,Nuclear Complices, Solitary,Nuclei Tractus Solitarius,Nucleus Tractus Solitarius,Nucleus, Solitary,Nucleus, Solitary Tract,Solitarii, Nuclei Tractus,Solitarius Nucleus, Tractus,Solitarius, Nuclei Tractus,Solitary Nuclear Complices,Tractus Solitarii, Nuclei,Tractus Solitarius Nucleus,Tractus Solitarius, Nuclei
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
December 2008, Respiratory physiology & neurobiology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
October 2018, Respiratory physiology & neurobiology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
February 1991, Respiration physiology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
March 1986, Journal of applied physiology (Bethesda, Md. : 1985),
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
November 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
September 2000, Respiration physiology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
January 2017, Respiratory physiology & neurobiology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
April 2014, The Journal of physiology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
January 1994, Advances in experimental medicine and biology,
P Schmitt, and V Soulier, and J M Péquignot, and J F Pujol, and M Denavit-Saubié
April 1993, Respiration physiology,
Copied contents to your clipboard!