Differential localization of SCG10 and p19/stathmin messenger RNAs in adult rat brain indicates distinct roles for these growth-associated proteins. 1994

T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191.

SCG10 is a developmentally regulated, growth-associated protein (GAP) that was isolated as a neuronal marker of the neural crest. It was recently found that SCG10 shares an amino acid sequence similarity with a phosphoprotein named stathmin or p19 of which phosphorylation is induced by nerve growth factor and vasoactive intestinal peptide in PC12 cells and striatal neurons, respectively. While expression of SCG10 messenger RNA dramatically decreases during postnatal development, significant levels of expression still persist into adulthood. To examine possible roles of SCG10 in the adult brain, we examined the distribution of messenger RNAs encoding SCG10 and p19/stathmin as well as GAP-43 in adult rat brain sections by northern blot, RNase protection and in situ hybridization. SCG10 transcripts are found at high levels in long-distance projecting neurons and neurons with extensive dendritic arbors, while p19/stathmin messenger RNA was weakly distributed over most brain areas. Both messenger RNAs are expressed in neuronal subpopulations but not in glia, although the overall distribution of the transcripts of these two structurally related genes is distinct. The spatial and temporal expression profiles of SCG10 messenger RNA is comparable to that of GAP-43, another neuronal GAP, in the developing nervous system, however the expression of SCG10 messenger RNA in the adult brain is distinct from that of GAP-43, especially in the hippocampus and brain stem, where the dentate granule cells and sensory and motor neurons of brainstem express SCG10 but not GAP-43. These results suggest that SCG10 may have a unique role in the neuronal growth-response of subsets of mature neurons, and that SCG10 plays a stathmin-like function at nerve terminals, to which it may be rapidly transported by means of membrane attachment due to a hydrophobic domain present in SCG10 but not in p19/stathmin. This suggests that SCG10 may play a role in structural plasticity in the adult brain.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008868 Microtubule Proteins Proteins found in the microtubules. Proteins, Microtubule
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010750 Phosphoproteins Phosphoprotein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens

Related Publications

T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
December 1995, Brain research. Developmental brain research,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
December 1996, The International journal of developmental biology,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
January 2001, Neuroscience,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
January 2004, Journal of neurobiology,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
June 1996, Neuroscience,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
January 1986, Nature,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
December 1997, Neuroreport,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
May 1986, Cell,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
December 1997, Journal of neuroscience research,
T Himi, and T Okazaki, and H Wang, and T H McNeill, and N Mori
November 1988, The Journal of biological chemistry,
Copied contents to your clipboard!