Tertiary base pair interactions in slipped loop-DNA: an NMR and model building study. 1994

N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
Department of Pharmaceutical Chemistry, University of California, San Francisco 94143.

Short direct repeat sequences are often found in regulatory regions of various genes; in some cases they display hypersensitivity to S1 nuclease cleavage in supercoiled plasmids. A non-standard DNA structure (Slipped Loop Structure, or SLS) has been proposed for these regions in order to explain the S1 cleavage data; the formation of this structure may be involved in the regulation of transcription. The structure can be generally classified as a particular type of pseudoknot. To date, no detailed stereochemical model has been developed. We have applied one-dimensional 1H NMR spectroscopy to study a synthetic DNA, 55 nucleotides in length, which cannot fold as a standard hairpin but which may favor the SLS formation. AT base pairs were identified, consistent only with the formation of an additional, tertiary miniduplex in the SLS. An all-atom stereochemically sound model has been developed for the SLS with the use of conformational calculations. The model building studies have demonstrated that the tertiary miniduplex can be formed for one of the plausible SLS isomers, but not for the other.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
December 2014, Current protocols in nucleic acid chemistry,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
December 2001, Nucleic acids research,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
December 1974, Nature,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
January 1988, Biochemistry,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
January 1988, Biochemistry,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
January 2020, Physical chemistry chemical physics : PCCP,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
September 2007, Physical review. E, Statistical, nonlinear, and soft matter physics,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
May 2001, Journal of the American Chemical Society,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
July 1990, Nucleic acids research,
N B Ulyanov, and K D Bishop, and V I Ivanov, and T L James
January 1984, Nucleic acids research,
Copied contents to your clipboard!