Analysis of the catalytic activity of human factor XIIIa by site-directed mutagenesis. 1994

J M Hettasch, and C S Greenberg
Department of Medicine, Duke University, Durham, North Carolina 27710.

Factor XIIIa (FXIIIa) stabilizes fibrin clots by covalently cross-linking fibrin molecules. The purpose of this study was to determine the amino acid requirements at the active site of FXIIIa for catalysis. We selected amino acids 310-317 (Arg-Tyr-Gly-Gln-Cys-Trp-Val-Phe) in the human FXIII A-chain sequence for analysis based on the high degree of sequence homology among the different transglutaminases. We converted each amino acid in this region to Ala by site-directed mutagenesis. These recombinant FXIII A-chain mutants were expressed in Escherichia coli using the pTrc99A expression vector. FXIIIa activity was assessed by measuring the incorporation of 5-(biotinamido)pentylamine into N,N'-dimethylcasein in a solid-phase microtiter plate assay. The Cys-314-->Ala mutation yielded a recombinant protein with no FXIIIa activity. We also found that changing Gly-312 and Val-316 to Ala resulted in 22 and 65% decreases in activity, respectively. The other five mutations near the active-site Cys resulted in FXIIIa molecules in which the activity was reduced > 95%. The mechanism of SH protease catalysis is similar to transglutaminase catalysis in that both form thioester intermediates. His and Asp residues may stabilize this enzyme-substrate intermediate. Therefore, we performed site-directed mutagenesis on several His residues (His-342, His-373, and His-450) as well as Asp-396 in human FXIII. We found that changing His-342 to Ala reduced catalytic activity by 85%, while the His-373-->Ala mutant had no activity. In contrast, changing His-450 to Ala reduced FXIIIa activity by only 15%. We also examined the activity of all the mutants in a fibrin cross-linking assay. Four of the mutations (Phe-317-->Ala, Tyr-315-->Ala, Gln-313-->Ala, and Asp-396-->Ala), in which the activity toward the small primary amine was reduced by > 95%, were still capable of cross-linking the gamma-chain of fibrin. Even though these four mutants produced gamma-gamma dimers, they were not capable of forming higher molecular weight cross-linked products. Finally, we found that the binding of all the mutants to fibrin was similar to that of wild-type FXIIIa. In conclusion, we demonstrated that changing the specific amino acids Arg-310-Phe-317 to Ala substantially reduced FXIIIa activity. In addition, full catalytic activity was dependent on His-342, His-373, and Asp-396. These findings provide new insights into the catalytic mechanism of FXIIIa.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011503 Transglutaminases Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence. Glutaminyl-Peptide Gamma-Glutamyltransferases,Protein-Glutamine gamma-Glutamyltransferases,Transglutaminase,Gamma-Glutamyltransferases, Glutaminyl-Peptide,Glutaminyl Peptide Gamma Glutamyltransferases,Protein Glutamine gamma Glutamyltransferases,gamma-Glutamyltransferases, Protein-Glutamine
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D005337 Fibrin A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot. Antithrombin I
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings

Related Publications

J M Hettasch, and C S Greenberg
August 1999, The Journal of biological chemistry,
J M Hettasch, and C S Greenberg
July 2018, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
J M Hettasch, and C S Greenberg
April 1992, The Biochemical journal,
J M Hettasch, and C S Greenberg
December 1992, The International journal of biochemistry,
J M Hettasch, and C S Greenberg
December 1992, FEMS microbiology letters,
J M Hettasch, and C S Greenberg
May 1994, Biochimica et biophysica acta,
J M Hettasch, and C S Greenberg
September 1989, Science (New York, N.Y.),
Copied contents to your clipboard!