Stimulus-secretion coupling in the neurohypophysis of the jerboa Jaculus orientalis. 1994

A Raji, and J J Nordmann
Centre de Neurochimie, Strasbourg, France.

1. In many mammals, severe dehydration is known to cause exhaustion of the vasopressin content of the neural lobe. Here, we have examined the physiological state of the neurohypophysis of the jerboa Jaculus orientalis, a rodent inhabitant of a semi-desert climate. 2. Isolated neurohypophyses and neurosecretory nerve endings were perfused in vitro and vasopressin and oxytocin release were determined by radioimmunoassay. 3. Electrical stimulation of the neurohypophysis with bursts of pulses mimicking the activity of hypersecreting neuroendocrine neurones induced similar increases of secretion in both control animals and animals dehydrated for up to 2 months. Neurohormone release was greatly potentiated when the bursts of pulses were separated by silent intervals. 4. Prolonged stimulation of neurohypophyses from both control and dehydrated animals induced a sustained increase of vasopressin release; in contrast, oxytocin release under similar conditions showed a biphasic secretory pattern consisting of a transient increase that subsequently decreased to a steady level whose amplitude was similar to that for vasopressin. 5. K(+)-induced secretion was largely inhibited by the Ca2+ channel blockers nicardipine and omega-conotoxin, suggesting that in this neurosecretory system both L- and N-type calcium channels play a major role in stimulus-secretion coupling. Depolarization of isolated nerve endings using a fast-flow perifusion system showed that there was no difference in the amplitude and the time course of the secretory response in dehydrated and hydrated animals. 6. The results demonstrate that, despite the climatic conditions in which the jerboas live, their neural lobes retain the capacity to release, upon depolarization of the plasma membrane of the nerve endings, large amounts of neurohormone. It is concluded that the neurohypophyseal peptidergic release system in the dehydrated jerboa functions adequately even under extreme environmental stress.

UI MeSH Term Description Entries
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003681 Dehydration The condition that results from excessive loss of water from a living organism. Water Stress,Stress, Water
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

A Raji, and J J Nordmann
June 1996, European journal of cell biology,
A Raji, and J J Nordmann
August 2010, Chronobiology international,
A Raji, and J J Nordmann
January 1988, Comparative biochemistry and physiology. A, Comparative physiology,
A Raji, and J J Nordmann
March 1984, The Journal of physiology,
A Raji, and J J Nordmann
August 2002, Neuro endocrinology letters,
Copied contents to your clipboard!