Reversible fatigue of stimulus-secretion coupling in the rat neurohypophysis. 1984

R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng

Single rat neurointermediate lobes were impaled on a stimulating electrode and continuously perifused with oxygenated medium. The secretion of oxytocin and vasopressin into the medium was measured by specific radio-immunoassays. The temporal profile of vasopressin release during a 20 min period of 13 Hz stimulation was compared with that of oxytocin. The results indicate that although the rate of secretion of both oxytocin and vasopressin declines over 20 min, the extent and time course of this fatigue is different for the two hormones. This difference could not be accounted for by differences in the rate of diffusion of released hormone from the tissue which was similar to the rate of wash-out of [14C]sucrose from the extracellular space in pre-labelled glands. In separate experiments glands were exposed to a prolonged period (60-70 min) of 13 Hz stimulation interrupted by brief silent periods (30 s-2 min duration). Some recovery from the fatigue of vasopressin secretion was evident after even the shortest of these silent periods. In further experiments glands were stimulated electrically for 18, 36, 54 and 72 s at 13 Hz: the order of presentation of the periods of stimulation was randomized between experiments. The vasopressin release rate declined markedly and progressively between 18 and 72 s. In contrast, the oxytocin release rate was relatively uniform throughout 72 s of stimulation. Thus vasopressin secretion is subject to a relatively rapid and dramatic fatigue. The results support the hypothesis that the phasic discharge patterns characteristic of vasopressin secreting neurones optimize the efficiency of vasopressin release from the nerve terminals in the neurohypophysis by avoiding the fatigue of stimulus-secretion coupling that accompanies continual stimulation.

UI MeSH Term Description Entries
D008297 Male Males
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012636 Secretory Rate The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa. Rate, Secretory,Rates, Secretory,Secretory Rates
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
August 2002, Neuro endocrinology letters,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
October 1994, The Journal of experimental biology,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
November 1975, The Journal of endocrinology,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
June 1967, The Japanese journal of physiology,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
November 1978, The American journal of physiology,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
January 1981, Kroc Foundation series,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
November 1997, The Journal of physiology,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
January 1983, Progress in brain research,
R J Bicknell, and D Brown, and C Chapman, and P D Hancock, and G Leng
July 1964, The Journal of physiology,
Copied contents to your clipboard!