Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons. 1994

J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
Instituto de Fisologia Celular, Universidad Nacional Autonoma de Mexico, Mexico.

Ca2+ currents in acutely isolated, adult rat neostriatal neurons were studied with whole-cell voltage-clamp techniques. In the vast majority of neurons (approximately 90%, n > 250), currents were exclusively of the high-voltage-activated (HVA) type. HVA currents activated near -40 mV and reached their maximum amplitude near 0 mV. Quasi-steady-state inactivation curves in many neurons were well fitted only with a sum of Boltzmann functions, suggesting that the HVA currents were heterogeneous. Although the block of whole-cell current by Cd2+ was well fitted with a single isotherm having an IC50 of near 1 microM, experiments with organic channel antagonists suggested that at least four types of HVA channels were expressed by most cells. On average, the L-channel antagonist nifedipine (5-10 microM) blocked 31 +/- 10% of the whole-cell current (n = 20), the N-channel antagonist omega-conotoxin GVIA (omega-CgTx) (2-5 microM) blocked 27 +/- 11% (n = 20), and the P-channel antagonist omega-agatoxin IVA (100-500 nM) blocked 21 +/- 10% (n = 18). In many neurons, the block by omega-CgTx was partially or completely reversible. In cells tested with a combination of these antagonists, 34 +/- 17% of the peak Ca2+ current remained unblocked (n = 13). Single-cell expression profiling of medium-sized neurons revealed the presence of rbA and rbB Ca2+ channel alpha 1 subunit mRNAs but low or undetectable levels of rbC mRNA (n = 12). These findings suggest that although adult neostriatal projection neurons do not express significant levels of LVA Ca2+ current, they do express a pharmacologically and structurally heterogeneous population of HVA currents.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004095 Dihydropyridines Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene

Related Publications

J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
November 1994, Journal of neurophysiology,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
March 1986, Journal of neurophysiology,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
April 1989, Brain research,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
January 1999, Neuroscience,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
January 2002, Neuroscience,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
May 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
April 1995, Journal of neurophysiology,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
March 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
May 1988, Pflugers Archiv : European journal of physiology,
J Bargas, and A Howe, and J Eberwine, and Y Cao, and D J Surmeier
January 2000, Neuroscience,
Copied contents to your clipboard!