Reconstitution of ATP-dependent aminophospholipid translocation in proteoliposomes. 1994

M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
Institut de Biologie Physico-Chimique, Paris, France.

In addition to ion-pumping ATPases, most plasma membranes of animal cells contain a Mg2+ ATPase activity, the function of which is unknown. This enzyme, of apparent molecular mass 110 kDa, was purified from human erythrocyte membranes by a series of column chromatographic procedures after solubilization in Triton X-100. When reincorporated into artificial bilayers formed from phosphatidylcholine, it was able to transport a spin-labeled phosphatidylserine analogue from the inner to the outer membrane leaflet provided Mg2+ ATP was present in the incubation mixture. The ATP-dependent transport of the phosphatidylethanolamine analogue required the presence of an anionic phospholipid (e.g., phosphatidylinositol) in the outer membrane leaflet. In contrast the transmembrane distribution of spin-labeled phosphatidylcholine was unaffected in the same experimental conditions. This transmembrane movement of aminophospholipid analogues was inhibited by treatment of the proteoliposomes with a sulfhydryl reagent. We conclude that the Mg2+ ATPase is sufficient for the biochemical expression of the aminophospholipid translocase activity, which is responsible for the inward transport of phosphatidylserine and phosphatidylethanolamine within the erythrocyte membrane. The presence of this transport activity in many animal cell plasma membranes provides a function for the Mg2+ ATPase borne by these membranes.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
March 1993, Biochemistry,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
May 1989, Biochimica et biophysica acta,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
January 2004, Scandinavian journal of clinical and laboratory investigation,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
May 2006, British journal of haematology,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
January 2005, Methods in enzymology,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
January 1997, European journal of biochemistry,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
December 1981, The Journal of biological chemistry,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
May 1982, Biochimica et biophysica acta,
M E Auland, and B D Roufogalis, and P F Devaux, and A Zachowski
February 1992, Biochimica et biophysica acta,
Copied contents to your clipboard!