Characterization of the correlation between ATP-dependent aminophospholipid translocation and Mg2+-ATPase activity in red blood cell membranes. 1997

Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
Institut für Biochemie und Molekularbiologie, Bern, Switzerland.

Pseudosubstrates and inhibitors of ATPases were studied with respect to their capability to modulate the kinetic behavior of Mg2+-ATPase and aminophospholipid translocation in red blood cell ghosts. ATP was substituted by the pseudosubstrates of P-type ATPases acetyl phosphate and p-nitrophenyl phosphate. With both pseudosubstrates, aminophospholipid translocation from the outer to the inner leaflets of resealed erythrocyte ghosts could be observed, although with a significantly decreased velocity compared to that in presence of ATP, both with respect to phosphate hydrolysis and translocation. Similarly, the apparent affinities for the pseudosubstrates were much lower than for ATP. Among the inhibitors studied, suramin acted as a competitive inhibitor of ATP towards both Mg2+-ATPase activity and aminophospholipid translocation. However, the inhibition of translocation occurred at a higher inhibitor concentration than the inhibition of Mg2+-ATPase activity. With elaiophylin, only a partial inhibition of Mg2+-ATPase activity could be detected, but translocation of labeled phosphatidylserine was almost completely abolished. With eosin Y, an almost complete inhibition of both Mg2+-ATPase activity and translocation could be achieved. The observed responses of aminophospholipid translocation to ATPase inhibitors strongly suggest that a P-type ATPase, part of which displays a Mg2+-ATPase activity, is involved in aminophospholipid translocation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D013498 Suramin A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Germanin,Moranil,Naganin,Naganol,Naphuride,Suramin Sodium,Suramin, Hexasodium Salt,Suramin, Monosodium Salt,Hexasodium Salt Suramin,Monosodium Salt Suramin,Salt Suramin, Hexasodium,Salt Suramin, Monosodium,Sodium, Suramin
D017301 Ca(2+) Mg(2+)-ATPase An enzyme that catalyzes the hydrolysis of ATP and is activated by millimolar concentrations of either Ca(2+) or Mg(2+). Unlike CA(2+)-TRANSPORTING ATPASE it does not require the second divalent cation for its activity, and is not sensitive to orthovanadate. (Prog Biophys Mol Biol 1988;52(1):1). A subgroup of EC 3.6.1.3. ATPase, Calcium Magnesium,ATPase, Magnesium,Adenosinetriphosphatase, Calcium, Magnesium,Adenosinetriphosphatase, Magnesium,Calcium Magnesium ATPase,Calcium Magnesium Adenosinetriphosphatase,Magnesium ATPase,Magnesium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium, Magnesium,Adenosine Triphosphatase, Magnesium,Ca Mg-ATPase,Ca2+-Mg2+ ATPase,Calcium Magnesium Adenosine Triphosphatase,Mg2+-ATPase,Mg2+-Dependent ATPase,ATPase, Ca2+-Mg2+,ATPase, Mg2+-Dependent,Adenosinetriphosphatase, Calcium Magnesium,Ca Mg ATPase,Ca2+ Mg2+ ATPase,Magnesium Adenosine Triphosphatase,Mg2+ ATPase,Mg2+ Dependent ATPase

Related Publications

Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
August 1976, Biochemical and biophysical research communications,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
January 1979, American journal of hematology,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
June 1977, Pflugers Archiv : European journal of physiology,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
November 1973, Biochimica et biophysica acta,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
June 1985, Biochimica et biophysica acta,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
December 1987, The Biochemical journal,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
August 1983, Neurochemical research,
Z Beleznay, and A Zachowski, and P F Devaux, and P Ott
February 1990, The Biochemical journal,
Copied contents to your clipboard!