Treatment with cholecystokinin receptor antagonist loxiglumide enhances insulin response to intravenous glucose stimulation in postpancreatitic rats. 1994

M Otsuki, and S Nakano, and I Tachibana
Third Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.

Pancreatic exocrine and endocrine function in postpancreatitic rats treated with cholecystokinin (CCK) receptor antagonist loxiglumide was compared with that treated with saline and CCK octapeptide (CCK-8) or with that in normal control rats. Treatment with loxiglumide (50 mg/kg body weight), CCK-8 (2.5 micrograms/kg body weight), or saline (2.5 ml/kg body weight) was given three times a day for 6 days starting 1 day after the induction of acute pancreatitis by a 4-h subcutaneous infusion of 20 micrograms/kg body weight/h of caerulein. On day 8, pancreatic exocrine and endocrine function was simultaneously determined following an intravenous injection of a mixed solution of 0.2 g/kg body weight glucose plus 100 ng/kg body weight caerulein. Basal pancreatic juice flow was significantly increased in all of the postpancreatitic rats irrespective of the treatment, whereas the maximal juice flow in the loxiglumide- and saline-treated rats was significantly low compared with the CCK-8-treated and the control rats. Basal and the peak protein outputs in the loxiglumide-treated rats were comparable to those in saline-treated rats, but were lower than those in the control or the CCK-8-treated rats. Although serum glucose concentrations in all of the postpancreatitic rats were similar to those in the control rats, stimulated as well as basal insulin release tended to be high compared with the control rats. In particular, loxiglumide-treated rats showed the exaggerated insulin response compared with other groups of rats. These present observations indicate that administration of high dose of loxiglumide for a long period decreases pancreatic enzyme output and causes insulin resistance.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D010195 Pancreatitis INFLAMMATION of the PANCREAS. Pancreatitis is classified as acute unless there are computed tomographic or endoscopic retrograde cholangiopancreatographic findings of CHRONIC PANCREATITIS (International Symposium on Acute Pancreatitis, Atlanta, 1992). The two most common forms of acute pancreatitis are ALCOHOLIC PANCREATITIS and gallstone pancreatitis. Acute Edematous Pancreatitis,Acute Pancreatitis,Pancreatic Parenchyma with Edema,Pancreatic Parenchymal Edema,Pancreatitis, Acute,Pancreatitis, Acute Edematous,Peripancreatic Fat Necrosis,Acute Edematous Pancreatitides,Acute Pancreatitides,Edema, Pancreatic Parenchymal,Edematous Pancreatitides, Acute,Edematous Pancreatitis, Acute,Fat Necrosis, Peripancreatic,Necrosis, Peripancreatic Fat,Pancreatic Parenchymal Edemas,Pancreatitides, Acute,Pancreatitides, Acute Edematous,Parenchymal Edema, Pancreatic,Peripancreatic Fat Necroses
D011377 Proglumide A drug that exerts an inhibitory effect on gastric secretion and reduces gastrointestinal motility. It is used clinically in the drug therapy of gastrointestinal ulcers. Xylamide,Milid,Xilamide
D011949 Receptors, Cholecystokinin Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood. CCK Receptors,Caerulein Receptors,Cholecystokinin Octapeptide Receptors,Cholecystokinin Receptors,Pancreozymin Receptors,Receptors, CCK,Receptors, Caerulein,Receptors, Pancreozymin,Receptors, Sincalide,Sincalide Receptors,CCK Receptor,CCK-4 Receptors,CCK-8 Receptors,Cholecystokinin Receptor,Receptors, CCK-4,Receptors, CCK-8,Receptors, Cholecystokinin Octapeptide,CCK 4 Receptors,CCK 8 Receptors,Octapeptide Receptors, Cholecystokinin,Receptor, CCK,Receptor, Cholecystokinin,Receptors, CCK 4,Receptors, CCK 8
D002108 Ceruletide A specific decapeptide obtained from the skin of Hila caerulea, an Australian amphibian. Caerulein is similar in action and composition to CHOLECYSTOKININ. It stimulates gastric, biliary, and pancreatic secretion; and certain smooth muscle. It is used in paralytic ileus and as diagnostic aid in pancreatic malfunction. Caerulein,Cerulein,Ceruletid,FI-6934,Takus,FI 6934,FI6934

Related Publications

M Otsuki, and S Nakano, and I Tachibana
November 1994, European journal of pharmacology,
M Otsuki, and S Nakano, and I Tachibana
November 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
M Otsuki, and S Nakano, and I Tachibana
February 1994, The Journal of pharmacology and experimental therapeutics,
M Otsuki, and S Nakano, and I Tachibana
January 1998, Arzneimittel-Forschung,
M Otsuki, and S Nakano, and I Tachibana
June 1990, British journal of clinical pharmacology,
M Otsuki, and S Nakano, and I Tachibana
August 1996, Journal of gastroenterology,
Copied contents to your clipboard!