Vesicle-micelle structural transition of phosphatidylcholine bilayers and Triton X-100. 1994

A De la Maza, and J L Parra
Departamento de Tensioactivos, Centro de Investigación y Desarrollo (C.I.D.), Barcelona, Spain.

The structural transition stages induced by the interaction of the non-ionic surfactant Triton X-100 on phosphatidylcholine unilamellar vesicles were studied by means of static and dynamic light-scattering, transmission-electron-microscopy (t.e.m.) and permeability changes. A linear correlation was observed between the effective surfactant/lipid molar ratios (Re) ('three-stage' model proposed for the vesicle solubilization) and the surfactant concentration throughout the process. However, this correlation was not noted for the partition coefficients of the surfactant between the bilayer and the aqueous medium (K). Thus a sharp initial K increase was observed until a maximum value was achieved for permeability alterations of 50% (initial step of bilayer saturation). Further surfactant additions resulted in a fall in the K values until 100% of bilayer permeability. Additional amounts of surfactant led to an increase in K until bilayer solubilization. Hence, a preferential incorporation of surfactant molecules into liposomes governs the initial interaction steps, leading to the initial stage of bilayer saturation with a free surfactant concentration that was lower than its critical micelle concentration (c.m.c.). Additional amounts of surfactant increased the free surfactant until the c.m.c. was reached, after which solubilization started to occur. Thus the initial step of bilayer saturation was achieved for a smaller surfactant concentration than that for the Resat, although this concentration was the minimum needed for solubilization to start. Large unilamellar vesicles began to form as the surfactant exceeded 15 mol% (50% bilayer permeability), the maximum vesicle growth being attained for 22 mol% (400 nm). Thereafter, static light-scattering started to decrease gradually, this fall being more pronounced after 40 mol%. The t.e.m. picture for 40 mol% (Resat.) showed unilamellar vesicles, although with traces of smaller structures. From 50 mol% the size distribution curves began to show a bimodal distribution. The t.e.m. pictures for 50-64 mol% revealed tubular structures, together with open bilayer fragments. Thereafter, increasing amounts of surfactant (65-69 mol%) led to planar multilayered structures which gradually tended to form concentric and helicoidal conformations. The scattered intensity decreased to a low constant value at more than 71-72 mol%. However, the surfactant concentration for the Re(sol) (72.6 mol %) still presented traces of aggregated structures, albeit with mono-modal size-distribution curves (particle size of 50 nm). This vesicle size corresponded to the liposome solubilization via mixed-micelle formation.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D017830 Octoxynol Nonionic surfactant mixtures varying in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups. They are used as detergents, emulsifiers, wetting agents, defoaming agents, etc. Octoxynol-9, the compound with 9 repeating ethoxy groups, is a spermatocide. Octylphenoxypolyethoxyethanols,Octoxinol,Octoxinols,Octoxynol-9,Octoxynols,Octylphenoxy Polyethoxyethanol,Triton X-100,Triton X-305,Triton X-45,Octoxynol 9,Polyethoxyethanol, Octylphenoxy,Triton X 100,Triton X 305,Triton X 45,Triton X100,Triton X305,Triton X45

Related Publications

A De la Maza, and J L Parra
November 1986, European journal of biochemistry,
A De la Maza, and J L Parra
May 1988, European journal of biochemistry,
A De la Maza, and J L Parra
March 1988, Biochemistry,
A De la Maza, and J L Parra
December 1991, Biophysical journal,
A De la Maza, and J L Parra
March 1991, Biochimica et biophysica acta,
A De la Maza, and J L Parra
June 2002, Journal of photochemistry and photobiology. B, Biology,
A De la Maza, and J L Parra
August 1987, Biochimica et biophysica acta,
Copied contents to your clipboard!