Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds. 1994

M Mücke, and F X Schmid
Laboratorium für Biochemie, Universität Bayreuth, Germany.

In the absence of its two disulfide bonds, ribonuclease T1 can exist in a native-like folded conformation when > or = 2 M NaCl is present. We measured the kinetics of unfolding and refolding of two reduced and carboxymethylated variants of ribonuclease T1 with one cis proline (the Ser54Gly/Pro55Asn variant) and with two cis prolines (the wild-type protein) as a function of the NaCl concentration. Single and double mixing techniques were used. Analysis of the kinetic results demonstrates that the two cis prolyl bonds at Pro39 and Pro55 remain cis in the folded state after the reduction and carboxymethylation of the disulfide bonds. Folded molecules with trans isomers could not be found. The substitution of cis-Pro55 influences the proline-limited folding reaction, and the analysis of the changes in the folding kinetics shows that the trans-->cis isomerizations of both prolines are slow and are rate-determining steps for the refolding of ribonuclease T1 in the presence as well as in the absence of the disulfide bonds. The direct folding reaction of protein chains with correct prolyl isomers is also affected by the Ser54Gly/Pro55Asn mutation. The rate of refolding is decreased, whereas the rate of unfolding is almost unaffected. The kinetic analysis points to two main consequences of the Ser54Gly/Pro55Asn mutation for the stability and the folding mechanism of RNase T1. It is moderately destabilizing, because the deletion of a conformationally restricted residue (Pro55-->Asn) and the insertion of a flexible residue (Ser54-->Gly) both tend to increase the entropy of the unfolded state. The cis<-->trans isomerization of Pro55 is abolished, however, leading to a decrease in the entropy of the unfolded protein. These two entropic contributions seem to partially compensate each other, and the net change in free energy as a consequence of the Ser54Gly/Pro55Asn double mutation is very small.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014508 Urea A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Basodexan,Carbamide,Carmol
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

M Mücke, and F X Schmid
April 1990, Protein engineering,
M Mücke, and F X Schmid
March 1960, The Journal of biological chemistry,
M Mücke, and F X Schmid
July 1989, The Journal of biological chemistry,
M Mücke, and F X Schmid
April 2009, Biophysical chemistry,
M Mücke, and F X Schmid
October 1996, European journal of biochemistry,
Copied contents to your clipboard!