The role of a trans-proline in the folding mechanism of ribonuclease T1. 1996

T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
Laboratorium für Biochemie, Universität Bayreuth, Germany.

Protein folding is often retarded by the cis reversible trans isomerizations of prolyl peptide bonds both in vitro and in vivo. An important role for the folding mechanism is well established for the prolyl peptide bonds that are cis in the native protein, but not for those that are trans. Here we investigated the role of trans-Pro73 for the folding of ribonuclease T1 (which additionally contains two cis-prolines) by comparing the wild-type protein with the Pro73-->Val variant. The Pro-->Val substitution led to a destabilization of the folded protein by 8.5 kJ/mol, which is explained by the strong, 25-fold increase in the rate of unfolding. In contrast, the rates and amplitudes of the fast and slow refolding reactions were virtually unchanged. trans-Proline residues remain largely trans after unfolding, and therefore their contributions to the observed folding kinetics should indeed be insignificant for proteins which also contain one or more cis prolines. The cis-proline residues dominate the kinetics of refolding, because almost all slow-folding molecules contain the respective incorrect (trans) isomers, and because trans-->cis isomerizations are slower than cis-->trans isomerizations. The inability to detect contributions from a trans-proline to the kinetics of folding does not imply that this proline is non-essential for folding in the sense that its cis reversible trans isomerization is energetically uncoupled from conformational folding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
July 1990, Biochemistry,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
July 1989, The Journal of biological chemistry,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
December 1994, Biochemistry,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
August 1980, The Journal of biological chemistry,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
March 1990, Biochemistry,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
March 1990, Journal of molecular biology,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
April 1986, Journal of molecular biology,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
March 1992, Journal of molecular biology,
T Schindler, and L M Mayr, and O Landt, and U Hahn, and F X Schmid
September 1992, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!