Identification of functional promoter elements in the rabbit smooth muscle myosin heavy chain gene. 1994

Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
Molecular Cardiology Laboratory, University of Cincinnati College of Medicine, Ohio 45267-0542.

Despite the importance of smooth muscle cell proliferation in vascular pathophysiological states, the mechanisms regulating smooth muscle cell growth and differentiation are poorly understood. Previous studies have shown that adult rabbit smooth muscles express two types of myosin heavy chain (MHC) isoforms, SM1 and SM2, which are generated through alternative RNA splicing from a single smooth muscle MHC (SMHC) gene. In the present study, we isolated and characterized the rabbit SMHC gene promoter. DNA sequence analysis of the upstream region of the SMHC gene revealed several putative cis-DNA regulatory elements proximal to the transcription start site. Most notably, cis-acting regulatory elements that closely resemble CC(A/T)6GG (CArG box) and myocyte enhancer binding factor 2 (MEF-2)-type sequence motifs were found in the SMHC 5'-flanking region. In addition, six E-box motifs were found in the 5'-flanking region of the SMHC gene between -374 and -2109 base pairs from the transcription start site. A series of transient transfection assays using SMHC promoter deletion constructs indicated that a promoter fragment extending to 2266 base pairs upstream of the transcription start site has the highest reporter activity in cultured rat aortic smooth muscle cells. Gel mobility shift analyses using the MEF-2-like sequence located at -1540 revealed a specific DNA protein complex, whereas the CArG-like element located at -1275 did not show protein binding. The SMHC promoter construct, p509-CAT, which included neither the CArG- nor MEF-2-type motifs, conferred 32% of chloramphenicol acetyltransferase activity in the same cells, whereas the construct p188-CAT, which contained the minimal promoter elements (TATA box), was significantly less active (7%; 2.0-fold over background). This is the first report describing the promoter elements of a gene whose expression is restricted to smooth muscle cells.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
June 1996, The Journal of biological chemistry,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
June 1989, The Journal of biological chemistry,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
March 1998, Circulation research,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
January 2006, Cell biochemistry and biophysics,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
May 1997, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
August 1989, European journal of biochemistry,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
June 1996, Development genes and evolution,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
October 2001, The Journal of biological chemistry,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
January 1989, European journal of biochemistry,
Y Katoh, and E Loukianov, and E Kopras, and A Zilberman, and M Periasamy
October 2000, Annals of internal medicine,
Copied contents to your clipboard!