Neuropeptide Y immunoreactivity identifies a regularly arrayed group of amacrine cells within the cat retina. 1994

J J Hutsler, and L M Chalupa
Department of Psychology, University of California, Davis 95616.

Retinal amacrine cells can be divided into subgroups on the basis of morphological properties and chemical content. It is likely that these subgroups have specific connections and serve unique functional roles within the inner plexiform layer. In the present study we show that immunoreactivity to neuropeptide Y (NPY) identifies a group of amacrine cells (165,000-170,000) within the adult cat retina. This is the largest group of peptide-containing amacrine cells identified to date in the cat retina. These neurons have small cell bodies and are regularly spaced at all retinal eccentricities examined. The density of NPY-immunoreactive cells, as well as their regular spacing, suggests that these neurons form a specific subgroup of the amacrine cell class and are likely to serve a unique role in the transfer of visual information through the inner plexiform layer.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J J Hutsler, and L M Chalupa
September 1988, The Journal of comparative neurology,
J J Hutsler, and L M Chalupa
August 1989, Brain research,
J J Hutsler, and L M Chalupa
January 1981, Vision research,
J J Hutsler, and L M Chalupa
May 1988, The Journal of comparative neurology,
J J Hutsler, and L M Chalupa
May 2002, The Journal of comparative neurology,
J J Hutsler, and L M Chalupa
September 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J J Hutsler, and L M Chalupa
December 1982, Brain research,
J J Hutsler, and L M Chalupa
October 1991, Experimental eye research,
Copied contents to your clipboard!