A carboxyl-terminal fragment of lipoprotein lipase binds to the low density lipoprotein receptor-related protein and inhibits lipase-mediated uptake of lipoprotein in cells. 1994

A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
Department of Medical Biochemistry, University of Aarhus, Denmark.

It has previously been shown that lipoprotein lipase can mediate uptake of remnant lipoprotein particles via binding to the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP). Binding of lipoprotein lipase, and of triglyceride-rich lipoproteins associated with the lipase, to LRP depends on an intact carboxyl-terminal folding domain of the lipase (Nykjaer, A., Bengtsson-Olivecrona, G., Lookene, A., Moestrup, S. K., Petersen, C. M., Weber, W., Beisiegel, W., and Gliemann, J. (1993) J. Biol. Chem. 268, 15048-15055). Here we show that the site for binding to the receptor is within residues 380-425 of the bovine and residues 378-423 of the human lipoprotein lipase. We demonstrate that a carboxyl-terminal fragment of human lipoprotein lipase (residues 378-448), expressed as fusion protein in Escherichia coli, binds to purified and cellular LRP but not to lipoproteins. Binding of the fragment to purified LRP was blocked by heparin. In addition, the fragment inhibited the binding of lipase and the lipase-mediated binding of lipoproteins to the purified receptor. The fragment exhibited reduced binding to proteoglycan-deficient cells. Moreover, the fragment inhibited the uptake of lipoproteins in cells mediated by the lipase via binding to heparan sulfate proteoglycans and LRP. We conclude that the fragment contains the site for binding to LRP and a candidate site for interaction with heparan sulfate proteoglycans, whereas binding to lipoproteins is inefficient. The fragment can therefore inhibit the lipase-mediated lipoprotein uptake, a process that may promote the development of atherosclerosis when occurring in cells of the arterial wall.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
March 1994, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
July 1993, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
July 1996, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
December 1992, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
February 1994, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
March 2004, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
July 1993, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
May 1994, The Journal of biological chemistry,
A Nykjaer, and M Nielsen, and A Lookene, and N Meyer, and H Røigaard, and M Etzerodt, and U Beisiegel, and G Olivecrona, and J Gliemann
October 1999, The Journal of biological chemistry,
Copied contents to your clipboard!