Acute nitric oxide blockade amplifies the renal vasoconstrictor actions of angiotension II. 1994

C Baylis, and J Harvey, and K Engels
Department of Physiology, Robert C. Byrd Health Sciences Center of West Virginia University, Morgantown.

The tone in the renal vasculature is determined by the balance between vasoconstrictor and vasodilator agents. In this study, the effect on renal function was investigated when the acute blockade of the endogenous nitric oxide system was superimposed on a state of high circulating angiotensin II. Studies were conducted in the conscious, unstressed rat measuring renal function before and during acute systemic nitric oxide blockade with nitro-L-arginine methyl ester and with or without concomitant angiotensin II infusion. Nitric oxide blockade alone, in the presence of normal, unstimulated levels of endogenous angiotensin II, caused a large rise in blood pressure and a doubling of renal vascular resistance. The infusion of angiotensin II alone produced a mild rise in systemic blood pressure and a small (30%) rise in renal vascular resistance. When nitric oxide blockade was combined with angiotensin II infusion, the rise in blood pressure was similar to that produced by nitric oxide blockade alone but the increase in renal vascular resistance was much greater (350%), leading to marked declines in renal function. These studies demonstrate that when angiotensin II levels are acutely elevated and are controlling renal vascular tone, nitric oxide is essential for the maintenance of adequate renal perfusion and function.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D005919 Glomerular Filtration Rate The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance. Filtration Rate, Glomerular,Filtration Rates, Glomerular,Glomerular Filtration Rates,Rate, Glomerular Filtration,Rates, Glomerular Filtration
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D014655 Vascular Resistance The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT. Peripheral Resistance,Total Peripheral Resistance,Pulmonary Vascular Resistance,Systemic Vascular Resistance,Peripheral Resistance, Total,Resistance, Peripheral,Resistance, Pulmonary Vascular,Resistance, Systemic Vascular,Resistance, Total Peripheral,Resistance, Vascular,Vascular Resistance, Pulmonary,Vascular Resistance, Systemic
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions

Related Publications

C Baylis, and J Harvey, and K Engels
November 1995, Journal of the American Society of Nephrology : JASN,
C Baylis, and J Harvey, and K Engels
December 1997, Hypertension research : official journal of the Japanese Society of Hypertension,
C Baylis, and J Harvey, and K Engels
May 2009, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
C Baylis, and J Harvey, and K Engels
November 2010, Experimental eye research,
C Baylis, and J Harvey, and K Engels
September 1998, Kidney international. Supplement,
C Baylis, and J Harvey, and K Engels
September 2005, European journal of pharmacology,
C Baylis, and J Harvey, and K Engels
August 1997, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!