Comparative aspects of placental lactogens: structure and function. 1994

I A Forsyth
Department of Cellular Physiology, Babraham Institute, Cambridge, U.K.

Removal of the pituitary from pregnant rats provided early evidence that the placenta was the source of prolactin-like bioactivity. After mid-pregnancy the placenta was able to support progesterone production by the corpus luteum (luteotrophic activity) and continued development of the mammary gland (mammotrophic activity). Three groups of mammals, the rodents, the ruminant artiodactyls and the primates are now known to produce from fetal placenta a remarkable variety of proteins which are related in structure to pituitary prolactin and growth hormone. Prolactin and growth hormone are themselves structurally related and are thought to have arisen from a common ancestral gene by gene duplication and evolutionary divergence. The receptors with which they interact also form a family of homologous proteins. Surprisingly the placental lactogens appear to have arisen more than once in evolution since in primates they are structurally closely related to growth hormone, while in rodents and ruminants they have closer similarity to prolactin. There is suggestive evidence that there may be specific receptors for placental lactogens in some fetal and maternal tissues. In humans a five-gene cluster on chromosome 17 contains two growth hormone (GH) and three placental lactogen (PL) genes. Two human PL genes encode identical proteins that are expressed in the placenta. One of the human GH genes is also placentally expressed. In mice, chromosome 13 carries the genes for mouse prolactin, for placental lactogen-I and -II (PL-I and PL-II) and for two other prolactin-related proteins, the proliferins. Rats also express PL-I and PL-II, together with at least three other placental prolactin-like proteins different from proliferins.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010926 Placental Hormones Hormones produced by the placenta include CHORIONIC GONADOTROPIN, and PLACENTAL LACTOGEN as well as steroids (ESTROGENS; PROGESTERONE), and neuropeptide hormones similar to those found in the hypothalamus (HYPOTHALAMIC HORMONES). Hormones, Placental
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012418 Ruminants A suborder of the order ARTIODACTYLA whose members have the distinguishing feature of a four-chambered stomach, including the capacious RUMEN. Horns or antlers are usually present, at least in males. Goats, Mountain,Ruminantia,Oreamnos americanus,Goat, Mountain,Mountain Goat,Mountain Goats,Ruminant
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

I A Forsyth
September 1992, Journal of animal science,
I A Forsyth
January 1990, Progress in clinical and biological research,
I A Forsyth
May 1977, Journal of steroid biochemistry,
I A Forsyth
July 2008, Reproductive biology,
I A Forsyth
July 1973, Endocrinology,
I A Forsyth
March 1987, Molecular and cellular endocrinology,
I A Forsyth
September 1984, Endocrinology,
I A Forsyth
January 2010, The International journal of developmental biology,
I A Forsyth
June 1999, Advanced drug delivery reviews,
I A Forsyth
October 1975, The Journal of experimental zoology,
Copied contents to your clipboard!