Rapid modulation of gap junction expression in mouse mammary gland during pregnancy, lactation, and involution. 1994

P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom.

We investigated the expression of gap junctions in virgin, pregnant, lactating, and involuting mouse mammary gland epithelium with a panel of sequence-specific antibodies to connexins 26, 32, 40 and 43. Indirect immunofluorescence labeling of frozen sections of mammary gland showed that connexin26 was the major connexin in mammary epithelium. Connexins 43, 40, and 32 were not detected. Connexin26 was not detected in the mammary epithelium of virgin mice but was increasingly expressed during pregnancy. At Day 4 of pregnancy, when the mammary gland was composed almost exclusively of ducts, low levels of labeling were detected in the duct epithelium. As pregnancy progressed, the level of labeling with antibodies to connexin26 increased in quantity and intensity. At Day 12, when developing lobules were present, immunolabeling for connexin26 was detected surrounding the developing lumina, which on Day 19 were distended with milk. Labeling of mammary gland reached a maximum on Day 24 (5 days' lactation) but within 24 hr of removal of the litter on Day 28, connexin26 labeling was greatly diminished. No further change in labeling intensity with the antibodies to connexins was detected throughout involution. Double immunofluorescence labeling of 5-day lactating mammary gland with antibodies to connexin26 and anti-keratin 14 or -keratin 19 indicated that the majority of gap junctions detected by this analysis were within the luminal cell population. Western blot analysis of a lactating mammary gland (Day 24) confirmed the absence or low level of expression of connexins 32 and 43, as seen in the immunofluorescence studies, and showed that connexin26 was a dominant antigen expressed in lactating mammary gland epithelium.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017629 Gap Junctions Connections between cells which allow passage of small molecules and electric current. Gap junctions were first described anatomically as regions of close apposition between cells with a narrow (1-2 nm) gap between cell membranes. The variety in the properties of gap junctions is reflected in the number of CONNEXINS, the family of proteins which form the junctions. Gap Junction,Junction, Gap,Junctions, Gap
D017630 Connexins A group of homologous proteins which form the intermembrane channels of GAP JUNCTIONS. The connexins are the products of an identified gene family which has both highly conserved and highly divergent regions. The variety contributes to the wide range of functional properties of gap junctions. Connexin,Connexin Complex Proteins,Gap Junction Proteins,Gap Junction Channel Proteins,Gap Junction Protein,Junction Protein, Gap,Junction Proteins, Gap

Related Publications

P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
December 1996, Biology of reproduction,
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
January 1957, Voprosy onkologii,
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
March 1961, The Biochemical journal,
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
September 2017, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS),
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
April 1954, The Biochemical journal,
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
July 1995, Experimental cell research,
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
July 2000, Developmental dynamics : an official publication of the American Association of Anatomists,
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
December 1969, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
April 1999, Journal of mammary gland biology and neoplasia,
P Monaghan, and N Perusinghe, and G Carlile, and W H Evans
June 1962, The Biochemical journal,
Copied contents to your clipboard!