Strong inhibition of mammalian lipoxygenases by the antiinflammatory seleno-organic compound ebselen in the absence of glutathione. 1994

C Schewe, and T Schewe, and A Wendel
University Clinics Charité, Institute of Biochemistry, Humboldt University of Berlin, Germany.

Both human recombinant 5-lipoxygenase (EC 1.13.11.34) and 15-lipoxygenase (EC 1.13.11.33, mammalian enzyme) purified from rabbit reticulocytes were inhibited in the absence of glutathione (GSH) by submicromolar concentrations of the seleno-organic compound ebselen. These concentrations were comparable to those of the enzymes. Soybean lipoxygenase-1 (EC 1.13.11.33, plant enzyme) was not inhibited, whereas prostaglandin endoperoxide synthase-1 (EC 1.14.99.1) was inhibited only at much higher concentrations of ebselen (IC50 = 37.7 +/- 4.3 microM). The action of ebselen on reticulocyte 15-lipoxygenase (IC50 = 0.17 +/- 0.01 microM) was studied in detail. Inhibition occurred instantaneously and appeared to be reversible and was largely abolished by a 20-fold molar excess of GSH over ebselen. In the presence of 1 mM GSH 50% inhibition was observed only at ebselen concentrations as high as 234 +/- 27 microM. 13S-hydroperoxy-9Z, 11E-octadecadienoic acid, the lipoxygenase product formed from linoleic acid, augmented the inhibitory effect at low concentrations and caused a partial reversal at high concentrations. A variety of derivatives or structural analogues of ebselen were also tested and proved to be either inactive or weaker inhibitors of 15-lipoxygenase. We have concluded that the potent inhibition of 15-lipoxygenase by ebselen is due neither to GSH peroxidase-like activity nor to lowering of the hydroperoxide tone. The pharmacological implications of these unique characteristics of the action of ebselen on lipoxygenases are then discussed.

UI MeSH Term Description Entries
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D001393 Azoles Five membered rings containing a NITROGEN atom. Azole
D016566 Organoselenium Compounds Organic compounds which contain selenium as an integral part of the molecule. Compounds, Organoselenium
D016859 Lipoxygenase Inhibitors Compounds that bind to and inhibit that enzymatic activity of LIPOXYGENASES. Included under this category are inhibitors that are specific for lipoxygenase subtypes and act to reduce the production of LEUKOTRIENES. 5-Lipoxygenase Inhibitor,Lipoxygenase Inhibitor,12-Lipoxygenase Inhibitors,15-Lipoxygenase Inhibitors,5-Lipoxygenase Inhibitors,Arachidonate 12-Lipoxygenase Inhibitors,Arachidonate 15-Lipoxygenase Inhibitors,Arachidonate 5-Lipoxygenase Inhibitors,Inhibitors, Lipoxygenase,12 Lipoxygenase Inhibitors,12-Lipoxygenase Inhibitors, Arachidonate,15 Lipoxygenase Inhibitors,15-Lipoxygenase Inhibitors, Arachidonate,5 Lipoxygenase Inhibitor,5 Lipoxygenase Inhibitors,5-Lipoxygenase Inhibitors, Arachidonate,Arachidonate 12 Lipoxygenase Inhibitors,Arachidonate 15 Lipoxygenase Inhibitors,Arachidonate 5 Lipoxygenase Inhibitors,Inhibitor, 5-Lipoxygenase,Inhibitor, Lipoxygenase,Inhibitors, 12-Lipoxygenase,Inhibitors, 15-Lipoxygenase,Inhibitors, 5-Lipoxygenase,Inhibitors, Arachidonate 12-Lipoxygenase,Inhibitors, Arachidonate 15-Lipoxygenase,Inhibitors, Arachidonate 5-Lipoxygenase

Related Publications

C Schewe, and T Schewe, and A Wendel
June 1990, Agents and actions,
C Schewe, and T Schewe, and A Wendel
January 1994, Arzneimittel-Forschung,
C Schewe, and T Schewe, and A Wendel
October 1993, Journal of biochemistry,
C Schewe, and T Schewe, and A Wendel
October 1987, Journal of pharmacobio-dynamics,
C Schewe, and T Schewe, and A Wendel
March 1993, Japanese journal of pharmacology,
C Schewe, and T Schewe, and A Wendel
January 2005, Anticancer research,
C Schewe, and T Schewe, and A Wendel
January 1990, Advances in experimental medicine and biology,
C Schewe, and T Schewe, and A Wendel
September 2014, Toxicology letters,
Copied contents to your clipboard!