Functional separation of dipeptide transport and hydrolysis in kidney brush border membrane vesicles. 1994

H Daniel, and S A Adibi
Clinical Nutrition Research Unit, University of Pittsburg, Pennsylvania 15213.

Dipeptides serve as substrates for both transport and hydrolytic processes. This has caused uncertainty as to whether different systems mediate both processes, and if so, whether they can be functionally separated. To investigate these problems, we determined the effects of a series of compounds previously characterized as aminopeptidase (AP) inhibitors on transport and hydrolytic activities of the kidney brush border membrane. The substrate used for assaying transport activity was Gly-Gln whereas Leu-, Arg-, and Glu-nitroanilides, as well as Gly-Tyr and Ala-Tyr, were used in assaying hydrolytic activity. The AP inhibitors, arphamenines A and B and bestatin, strongly inhibited transport by the oligopeptide/H+ symporter (EC50 values of 15 to 67 microM). The mechanism of inhibition appeared to be competition for the binding site of the symporter. In contrast, leucinethiol, leuhistin, and amastatin had little or no effect on dipeptide transport (EC50 values of 4 to more than 50 mM). Arphamenine and leucinethiol, in concentrations as high as 100 microM, were found to be either ineffective or weak inhibitors of membrane-associated hydrolysis. In contrast, amastatin and leuhistin, in concentrations as low as 20 microM, almost completely inhibited dipeptide hydrolysis. These results show that dipeptide hydrolysis can be selectively suppressed by either amastatin or leuhistin and dipeptide transport by arphamenine. Furthermore, the results provide new insight into the structural features of substrates that are recognized at the binding site of the oligopeptide/H+ symporter.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

H Daniel, and S A Adibi
January 1996, The Journal of experimental biology,
H Daniel, and S A Adibi
March 1992, Biochimica et biophysica acta,
H Daniel, and S A Adibi
June 1975, Biochimica et biophysica acta,
H Daniel, and S A Adibi
September 1985, American journal of obstetrics and gynecology,
H Daniel, and S A Adibi
August 1979, The Biochemical journal,
H Daniel, and S A Adibi
January 1988, Biochimica et biophysica acta,
H Daniel, and S A Adibi
March 1981, The American journal of physiology,
H Daniel, and S A Adibi
January 1979, The Biochemical journal,
Copied contents to your clipboard!