Corneal topographic analysis after excimer photorefractive keratectomy. 1994

D T Lin
Department of Ophthalmology, University of British Columbia, Vancouver, Canada.

BACKGROUND A 2-year experience with corneal topography after photorefractive keratectomy (PRK) is reported, specifically reviewing the correlation of surface regularity index versus best spectacle-corrected visual acuity as a function of various ablation patterns. Centration and stability issues also are discussed. METHODS Excimer laser PRK for myopia was performed on 502 consecutive eyes. Corneal topographic analysis was performed at the 1-, 3-, 6-, and 12-month postoperative follow-up visits. In all patients, PRK was performed with an argon fluoride laser, and a topographic analysis was done. RESULTS Topographic analysis at the first postoperative month was useful for determining decentration of the optical zone. The mean decentration from the pupillary center for all eyes was 0.34 mm. Four main patterns of ablation were noted by subtraction analysis. At the 1-month postoperative examination, a "uniform" ablation was present in 44% of eyes, "keyhole" ablations were present in 12% of eyes, "semicircular" ablations were present in 18% of eyes, and an unusual "central island" was present in the remaining 26% of eyes. However, on subsequent follow-up the central islands tended to resolve with time. At 3 months postoperatively, 18% of eyes in that group showed a central island, 8% showed a central island at 6 months, and only 2% of eyes showed a central island at the 12-month postoperative visit. Correlation of central island topography with visual acuity and progressive hyperopia are discussed. CONCLUSIONS Corneal topography is essential for evaluating surface changes after excimer PRK. The surface regularity index is a good indicator of best spectacle-corrected visual acuity and is used to evaluate irregular astigmatism after PRK. Central island topographies are correlated with poor initial visual rehabilitation. Long-term stability issues are answered with continued topographic follow-up. Understanding corneal hydration changes between the central and peripheral cornea may help us understand the etiology of central islands.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D009216 Myopia A refractive error in which rays of light entering the EYE parallel to the optic axis are brought to a focus in front of the RETINA when accommodation (ACCOMMODATION, OCULAR) is relaxed. This results from an overly curved CORNEA or from the eyeball being too long from front to back. It is also called nearsightedness. Nearsightedness,Myopias,Nearsightednesses
D011183 Postoperative Complications Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery. Complication, Postoperative,Complications, Postoperative,Postoperative Complication
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D005139 Eyeglasses A pair of ophthalmic lenses in a frame or mounting which is supported by the nose and ears. The purpose is to aid or improve vision. It does not include goggles or nonprescription sun glasses for which EYE PROTECTIVE DEVICES is available. Glasses,Spectacles,Sun Glasses, Prescription,Glasses, Prescription Sun,Prescription Sun Glasses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014792 Visual Acuity Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast. Acuities, Visual,Acuity, Visual,Visual Acuities
D053685 Laser Therapy The use of photothermal effects of LASERS to coagulate, incise, vaporize, resect, dissect, or resurface tissue. Laser Knife,Laser Scalpel,Surgery, Laser,Vaporization, Laser,Laser Ablation,Laser Knives,Laser Photoablation of Tissue,Laser Surgery,Laser Tissue Ablation,Nonablative Laser Treatment,Pulsed Laser Tissue Ablation,Ablation, Laser,Ablation, Laser Tissue,Knife, Laser,Knifes, Laser,Knive, Laser,Knives, Laser,Laser Knifes,Laser Knive,Laser Scalpels,Laser Surgeries,Laser Therapies,Laser Treatment, Nonablative,Laser Treatments, Nonablative,Laser Vaporization,Nonablative Laser Treatments,Scalpel, Laser,Scalpels, Laser,Surgeries, Laser,Therapies, Laser,Therapy, Laser,Tissue Ablation, Laser

Related Publications

D T Lin
January 1998, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
D T Lin
January 1997, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
D T Lin
July 1992, Archives of ophthalmology (Chicago, Ill. : 1960),
D T Lin
January 1998, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
D T Lin
March 1998, Journal of the Formosan Medical Association = Taiwan yi zhi,
D T Lin
March 2000, Journal of cataract and refractive surgery,
D T Lin
January 1996, Journal of cataract and refractive surgery,
D T Lin
May 1995, Archives of ophthalmology (Chicago, Ill. : 1960),
Copied contents to your clipboard!