Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: role of the fnr, arcA, and himA gene products. 1994

S Darie, and R P Gunsalus
Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.

While many organisms synthesize delta-aminolevulinate, the precursor of heme, by condensing succinyl-coenzyme A and glycine, others use a glutamate-dependent pathway in which glutamyl-tRNA dehydrogenase catalyzes the rate-determining step. The hemeA gene that encodes this latter enzyme in Escherichia coli has been cloned and sequenced. To examine how its expression is regulated, we constructed hemA-lacZ operon and gene fusions and inserted them into the chromosome in single copy. The effect of aerobic and anaerobic growth conditions and the availability of electron acceptors and various carbon substrates were documented. Use of different types of cell culture medium resulted in a fivefold variation in hemA-lacZ expression during aerobic cell growth. Anaerobic growth resulted in 2.5-fold-higher hemA-lacZ expression than aerobic growth. This control is mediated by the fnr and arcA gene products. Fnr functions as a repressor of hemA transcription during anaerobic cell growth only, whereas the arcA gene product activates hemA gene expression under both aerobic and anaerobic conditions. Integration host factor protein was also shown to be required for control of hemA gene regulation. To determine whether an intermediate or a product of the heme biosynthetic pathway is involved in hemA regulation, hemA-lacZ expression was analyzed in a hemA mutant. Expression was elevated by 20-fold compared with that in a wild-type strain, while the addition of the heme pathway intermediate delta-aminolevulinate to the culture medium restored expression to wild-type levels. These results suggest that the heme pathway is feedback regulated at the level of hemA gene expression, to supply heme as it is required during different modes of cell growth.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions

Related Publications

S Darie, and R P Gunsalus
March 2005, Biotechnology and bioengineering,
S Darie, and R P Gunsalus
April 2005, The Journal of biological chemistry,
S Darie, and R P Gunsalus
August 2003, The Journal of biological chemistry,
S Darie, and R P Gunsalus
August 1990, FEMS microbiology reviews,
S Darie, and R P Gunsalus
March 1994, Molecular microbiology,
S Darie, and R P Gunsalus
August 1997, Journal of bacteriology,
Copied contents to your clipboard!